2. POLYNOMIALS

• POLYNOMIAL •

An algebraic expression in one variable x, of the form $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$, where a_0 , a_1 , a_2 , ..., a_n are real numbers (constants), $a_n \neq 0$ and all the exponents of x are non-negative integers is called a polynomial in x. $a_n x^n$, $a_{n-1} x^{n-1}$, $a_{n-2} x^{n-2} \dots a_2 x^2$, $a_1 x$, a_0 are known as terms of polynomials and a_0 , a_1 , a_2 , ..., a_n are also known as coefficients of polynomials.

Example:
$$f(x) = 4x + 3$$
, $g(x) = 3x^2 + 9x - 3$, $p(x) = \frac{1}{2}x^3 + \frac{3}{4}x^2 - x + 3$

PRACTICE **PROBLEMS**

1. Which of the following expressions are polynomials in one variable and which are not? State reasons

(i)
$$x^2 + 2x - 5$$
 (ii) $5t^3 - 3t^5 - 5\sqrt{2}$ (iii) $4s + \frac{1}{s}$ (iv) $\frac{(x + x^2)}{x}$ (v) $x + \sqrt{7}x^3 + x^2$ (vi) $\sqrt{r} + \frac{1}{\sqrt{r}}$

• DEGREE OF A POLYNOMIAL •

The exponent of the highest degree term in a polynomial is known as the degree of the polynomial. Example : (i) f (x) = 4x + 5 is a polynomial of degree 1. (ii) g (x) = $5x^2 + 2x - 5$ is a polynomial of degree 2.

ILLUSTRATION

Q.1 Find out the degree of following polynomials.

(i)
$$p(x) = 7x + 5x^2 - \sqrt{3}$$
 (ii) $q(t) = 5t^4 - 32t^2 + 5t - 8$ (iii) $r(p) = p^3 - p^6 - 5\sqrt{2}$ (iv) $h(x) = \frac{1}{2} - 3x$

Sol. (i) p(x) is of degree 2 as highest powered term is 5x².
(iii) r(p) is of degree 6.

(ii) q(t) is of degree 4.(iv) h(x) is of degree 1.

PRACTICE **PROBLEMS**

2. Write the degree of polynomial p(x) gives as:

(i)
$$p(x) = x^2 + \frac{3}{2}x + 1$$

(ii) $p(x) = 3x^3 - \frac{7}{2}x + \sqrt{3}$
(iii) $p(x) = \sqrt{7}x^4 + 2x^3 + \sqrt{9}x + 4$
(iv) $p(x) = \frac{3}{4}x - 5$
(v) $p(x) = -4x^3 - \frac{1}{\sqrt{3}}x^2 + x^4$
(vi) $p(x) = -\sqrt{5}$

•TYPES OF POLYNOMIALS•

0. Constant Polynomial: A polynomial of degree zero is called a constant polynomial.

Example : f(x) = 5, $q(x) = \frac{5}{2}$, $r(x) = -\frac{7}{5}$

The constant polynomials 0 (zero) is known as the zero polynomial. The degree of zero polynomial is *not defined* because f(x) = 0, $g(x) = 0x^4$, $h(x) = 0x^6$, $p(x) = 0x^{12}$ are all equal to zero polynomials.

1. Linear polynomial: A polynomial of degree 1 is called a linear polynomial.

Example : f (x) = 7x, q (y) =
$$\frac{4}{3}$$
 y + 8, r(t) = $-\frac{4}{7}$ t - 7, h(x) = $\sqrt{3}x$ + 7

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334

2. Quadratic polynomial: A polynomial of degree 2 is called a quadratic polynomial.

Example : f (y) = 4y², q (s) = $\frac{2}{5}s^2 + 8$, r(x) = $\sqrt{3}x^2 + 7x + 9$

3. Cubic polynomial: A polynomial of degree 3 is called a cubic polynomial.

Example : f (t) = 7t³, p (r) = $\frac{2}{5}r^3 + 9r^2 + 3r + 8$, h(x) = $\sqrt{5}x^2 + 7x + 9x^3 + 2$

4. Bi-Quadratic polynomial: A polynomial of degree 4 is called a bi-quadratic polynomial. Example: $p(x) = 3x^4 + 5x^3 + 2x^2 - 6x - 3$, $q(t) = 5t^4 + 9t^2 + 4$

PRACTICE **PROBLEMS**

3. Find the types of the polynomials on the basis of degree:

(i) $\sqrt{5x^2 + 6x + 3}$ (ii) $x^4 + 2x^2 + 2$ (iii) 5 (iv) 4y + 8 (v) $12 s^3$

•VALUE OF A POLYNOMIAL

Value of a polynomial f(x) at $x = \alpha$ is obtained by substituting $x = \alpha$ in the given polynomial and is denoted by $f(\alpha)$.

(ILLUSTRATION)

Q.2 Find the value of $p(x) = 3x^2 + 5x - 4$ at x = -2 and x = 5

Sol. $p(-2) = 3(-2)^2 + 5(-2) - 4 = 3(4) - 10 - 4 = 12 - 14 = -2$ Ans

$$p(5) = 3(5)^2 + 5(5) - 4 = 3(25) + 25 - 4 = 75 + 21 = 96$$
 Ans

ZERO OF A POLYNOMIAL

A real number c is said to be a zero of a polynomial p(x), if p(c) = 0. The zeroes of polynomial p(x) are actually the x-coordinates of the points where the graph of y = p(x) intersects the x-axis.

Example : Let p(x) = 4x - 8, if we put x = 2, then p(2) = 4(2) - 8 = 8 - 8 = 0, so 2 is a zero of p(x)

POINT TO NOTE:

- * A linear polynomial can have at most one zero.
- * A quadratic or cubic polynomial can have at most two and three zeroes respectively.
- * In general, a polynomial of degree n has atmost n zeroes.

* A polynomial can have minimum 0 (zero) zeroes.

ILLUSTRATION

Q.3 Find the zeroes of the polynomial $p(x) = x^2 - 10x - 75$

Sol. We have, $p(x) = x^2 - 10x - 75 = x^2 - 15x + 5x - 75 = x(x - 15) + 5(x - 15) = (x - 15)(x + 5)$ $\therefore p(x) = (x - 15)(x + 5)$ So, p(x) = 0 when x = 15 or x = -5. Therefore required zeroes are 15 and -5.

Q.4 Find the zeroes of the polynomial $3x^2 - x - 4$.

Sol.
$$P(x) = 3x^2 - x - 4 = 3x^2 - 4x + 3x - 4 = x(3x - 4) + 1(3x - 4) = (x + 1)(3x - 4)$$

zeroes of the polynomial, P(x) = 0 So, $(x + 1)(3x - 4) = 0 \Rightarrow x + 1 = 0$, 3x - 4 = 0

 \Rightarrow x = -1, x = $\frac{4}{3}$ are the zeroes of the polynomial P(x)

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334

- **Q.5** Show that 2 is not a zero of the polynomial, $P(x) = x^2 + 2x + 5$
- **Sol.** $P(x) = x^2 + 2x + 5$, then $P(2) = (2)^2 + 2(2) + 5 = 4 + 4 + 5 = 13 \neq 0$ since, $P(2) \neq 0$, 2 is not a zero of the polynomial P(x).

PRACTICE **PROBLEMS**

4. Find the zeroes of the following polynomials:

(i) $x^2 - x - 6$	(ii) $3y^2 - 12$	(iii) $5t^2 + 30t$	(iv) $9x^2 + 3x - 2$
(v) $(2x + 5)^2$	(vi) $8 - 4\sqrt{2}x + x^2$	(vii) 4x ²	(viii) $(x - 3)(x + 4)$

GRAPH OF POLYNOMIAL

Geometric Meaning of the zeroes of a polynomial

- In algebraic language, the graph of a polynomial f(x) is the collection of all points (x, y) where y = p(x)
- (i) Graph of a linear polynomial p(x) = ax + b is a straight line.

(ii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open upwards like \bigcup if a > 0.

(iii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open downwards like \cap if a < 0.

(iv) In general a polynomial p(x) of degree n crosses the x-axis at atmost n points.

Zeroes of a polynomial with respect to graph of the polynomial:

(i) When the graph of quadratic polynomial does not cut the x-axis at any point. The quadratic polynomial $ax^2 + bx + c$ has no zero.

(ii) When the graph cut x-axis at exactly one point. There is only one zero for the quadratic polynomial ax^2+bx+c

(iii) When the graph cut x-axis at two distinct points there are two zeroes of quadratic polynomial $ax^2 + bx + c$

(iv) When the graph cut x-axis at three distinct points there are three zeroes of cubic polynomial ax^3+bx^2+cx+d

ILLUSTRATION

Q.6 The graphs of y = p(x) are given below. Find the number of zeroes of p(x) in each case:

- **Sol.** (i) The number of zeroes is 2 as the given curve intersects x-axis at two points.
 - (ii) The given curve intersects x-axis at three points so, the number of zeroes is 3.
 - (iii) The curve intersects only at one point, therefore, required number of zeroes is one.

PRACTICE **PROBLEMS**

5. Each of the graph of y = P(x), where P(x) is a polynomial for each of the graph, find the number of the zeroes of P(x).

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334 CLASSES ALSO AT : H-36 B, KALKAJI PH. : 26228900, 40601840, E-555, 1ST FLOOR NEAR RAMPHAL CHOWK SEC-7 DWARKA PH. 9560088728-29 6. Which of the following is not the graph of a quadratic polynomial?

7. The graph of y = p(x) given below. Find the number of zeroes of p(x), in each case:-

RELATIONSHIP BETWEEN ZEROES AND COEFFICIENTS OF A POLYNOMIAL

1. If α , β are the zeroes of quadratic polynomial p (x) = ax² + bx + c, a \neq 0 then, sum of zeroes = $\alpha + \beta = -\frac{b}{a}$,

product of zeroes = $\alpha\beta = \frac{c}{a}$

2. If α , β and γ are the zeroes of cubic polynomial, $p(x) = ax^3 + b^2 + cx + d$, $a \neq 0$, then,

sum of zeroes = $\alpha + \beta + \gamma = -\frac{b}{a}$, Sum of product of zeroes = $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$, product of zeroes = $\alpha\beta\gamma = -\frac{d}{a}$

ILLUSTRATION

Q.7 Find the zeroes of the polynomial $3x^2 - 10x + 8$ and verify the relationship between the zeroes and the coefficients.

Sol. Let us factorise $3x^2 - 10x + 8$ and find its two zeroes $3x^2 - 10x + 8 = 3x^2 - 6x - 4x + 8 = 3x (x - 2) - 4 (x - 2) = (3x - 4) (x - 2)$ So, $3x - 4 = 0 \implies x = \frac{4}{3}$ and $x - 2 = 0 \implies x = 2$; Let $\alpha = \frac{4}{3}$ and $\beta = 2$ Direct Method: $\alpha + \beta = \frac{4}{3} + 2 = \frac{4+6}{3} = \frac{10}{3}$ and $\alpha \times \beta = \frac{4}{3} \times 2 = \frac{8}{3}$ Formula Method: $3x^2 - 10x + 8$, Let a = 3, b = -10, c = 8

Sum of zeroes =
$$\alpha + \beta = \frac{-b}{a} = \frac{-(-10)}{3} = \frac{10}{3}$$
 and Product of zeroes = $\alpha \times \beta = \frac{c}{a} = \frac{8}{3}$

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334

- **Q.8** Find the zeroes of the polynomial $5x^2 15x$ and verify the relationship between the zeroes and the coefficients.
- **S o l**. Let us factorise $5x^2 15x$ by taking out common factors and find its two zeroes

 $5x^{2} - 15x = 5x (x - 3) \qquad ; \qquad \text{So, } 5x = 0 \Rightarrow x = \frac{0}{5} = 0 \text{ and } x - 3 = 0 \Rightarrow x = 3$ Let $\alpha = 0$ and $\beta = 2 \qquad ; \qquad \text{Direct Method: } \alpha + \beta = 0 + 3 = 3 \text{ and } \alpha \times \beta = 0 \times 3 = 0$ Formula Method: $5x^{2} - 15x$, Let a = 5, b = -15, c = 0Sum of zeroes $= \alpha + \beta = \frac{-b}{a} = \frac{-(-15)}{5} = 3$ and Product of zeroes $= \alpha \times \beta = \frac{c}{a} = \frac{0}{5} = 0$ **Q.9** Find the zeroes of the polynomial $x^{2} - 6$ and verify the relationship between the zeroes and the coefficients. **S o l** . Let us factorise $x^{2} - 6$ by using identity $a^{2} - b^{2} = (a + b)(a - b)$ and find its two zeroes $x^{2} - 6 = x^{2} - (\sqrt{6})^{2} = (x + \sqrt{6})(x - \sqrt{6})$ So, $x + \sqrt{6} = 0 \Rightarrow x = -\sqrt{6}$ and $x - \sqrt{6} = 0 \Rightarrow x = \sqrt{6}$ Let $\alpha = -\sqrt{6}$ and $\beta = \sqrt{6}$ Direct Method: $\alpha + \beta = -\sqrt{6} + \sqrt{6} = 0$ and $\alpha \times \beta = -\sqrt{6} \times \sqrt{6} = -6$ Formula Method: $x^{2} - 6$, Let a = 1, b = 0, c = -6Sum of zeroes $= \alpha + \beta = \frac{-b}{a} = \frac{0}{1} = 0$ and Product of zeroes $= \alpha \times \beta = \frac{c}{a} = \frac{-6}{1} = -6$

- **Q.10** If α and β are the zeros of the quadratic polynomial $f(x) = x^2 px + q$, then find the values of
 - (i) $\alpha^2 + \beta^2$ (ii) $\frac{1}{\alpha} + \frac{1}{\beta}$
- **Sol.** Since α and β are the zero of the polynomial $f(x) = x^2 px + q$.

$$\therefore \alpha + \beta = -\left(\frac{-p}{1}\right) = p \text{ and } \alpha\beta = \frac{q}{1} = q$$
(i) We have, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$
 $\Rightarrow \alpha^2 + \beta^2 = p^2 - 2p$
(ii) We have, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{p}{q}$

Q.11 If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 - bx + c$, then evaluate:

(i)
$$\alpha^2 + \beta^2$$
 (ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (iii) $\alpha^3 + \beta^3$ (iv) $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ (v) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$

Sol. Since α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$.

$$\therefore \quad \alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{c}{a}$$
(i) We have, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$

$$\Rightarrow \quad \alpha^2 + \beta^2 = \left(\frac{-b}{a}\right)^2 - \frac{2c}{a} = \frac{b^2 - 2ac}{a^2}$$
(ii) We have, $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{\left(\frac{-b}{a}\right)^2 - 2\left(\frac{c}{a}\right)}{\frac{c}{\alpha\beta}}$

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334 CLASSESALSOAT : H36B, KALKAJI FH : 2622800, 40801840, E-555, 197 FLOOR NEAR RAMPHAL CHOWK SEC-7 DWARKA PH. 9560088728-29

$$\Rightarrow \qquad \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{b^2 - 2ac}{ac}$$

(iii) We have, $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$

$$\Rightarrow \qquad \alpha^{3} + \beta^{3} = \left(\frac{-b}{a}\right)^{3} - 3\frac{c}{a}\left(\frac{-b}{a}\right) = \frac{-b^{3}}{a^{3}} + \frac{3bc}{a^{2}} = \frac{-b^{3} + 3abc}{a^{3}} = \frac{3abc - b^{3}}{a^{3}}$$

(iv) We have,
$$\frac{1}{\alpha^3} + \frac{1}{\beta^3} = \frac{\alpha^3 + \beta^3}{(\alpha\beta)^3} = \frac{\frac{3abc - b^3}{a^3}}{\left(\frac{c}{a}\right)^3}$$
 [Using (iv)]

$$\Rightarrow \qquad \frac{1}{\alpha^3} + \frac{1}{\beta^3} = \frac{3abc - b^3}{c^3}$$

(v) We have,
$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta} = \frac{\left(-\frac{b}{a}\right)^3 - 3\left(\frac{c}{a}\right)\left(-\frac{b}{a}\right)}{\frac{c}{a}} = \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{3abc - b^2}{a^2c}$$

Q.12 If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate:

(i) $\alpha^4 + \beta^4$ (ii) $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2}$

S o l. Since and are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$.

$$\therefore \alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{c}{a}$$
(i) We have, $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$

$$\Rightarrow \alpha^4 + \beta^4 = \left\{ (\alpha + \beta)^2 - 2\alpha\beta \right\}^2 - 2(\alpha\beta)^2$$

$$\Rightarrow \alpha^4 + \beta^4 = \left\{ \left(-\frac{b}{a} \right)^2 - 2\frac{c}{a} \right\}^2 - 2\left(\frac{c}{a}\right)^2$$

$$\Rightarrow \alpha^4 + \beta^4 = \left(\frac{b^2 - 2ac}{a^2} \right)^2 - \frac{2c^2}{a^2}$$

$$\Rightarrow \alpha^4 + \beta^4 = \frac{(b^2 - 2ac)^2 - 2a^2c^2}{a^4}$$
(ii) We have, $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{\alpha^4 + \beta^4}{\alpha^2\beta^2} = \frac{(b^2 - 2ac)^2 - 2a^2c^2}{a^4 \times \left(\frac{c}{a}\right)^2}$

$$\Rightarrow \frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{(b^2 - 2ac)^2 - 2a^2c^2}{a^2c^2}$$
[Using (i)]

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334 CLASSES ALSO AT : H-36 B, KALKAJI PH. : 26228900, 40601840, E-555, 1ST FLOOR NEAR RAMPHAL CHOWK SEC-7 DWARKA PH. 9560088728-29

PRACTICE **PROBLEMS**

- 8. Find the zeroes of the quadratic polynomials and verify the relationship between the zeroes and the coefficients.
 - (i) $x^2 + 5x 36$ (ii) $9x^2 + 3x 2$ (iii) $6x^2 3 7x$ (iv) $x^2 + 4x$ (v) $3x^2 + 6x$ (vi) $5x^2 9x$ (vii) $x^2 9$ (viii) $3x^2 5$
- 9. If α and β are the zeros of the quadratic polynomial $f(x) = 5x^2 + 8x + 3$, then evaluate:

(i)
$$\alpha^2 + \beta^2$$
 (ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (iii) $\alpha^3 + \beta^3$ (iv) $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ (v) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$

FORMATION OF QUADRATIC AND CUBIC POLYNOMIALS

If α , β are zeroes of a quadratic polynomial p(x), then k { $x^2 - (\alpha + \beta) x + \alpha\beta$ } is the quadratic polynomial or k { $x^2 - (Sum of roots) x + Product of roots$ } where k is a real number.

If α , β , γ are zeroes of a cubic polynomial p(x), then k { $x^3 - (\alpha + \beta + \gamma) x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha) x + \alpha\beta\gamma$ } is the cubic polynomial or k { $x^3 - (Sum of roots) x^2 + (Sum of product of roots) x + Product of roots }$

ILLUSTRATION

Q.13 Write a quadratic polynomial, the sum and product of whose zeroes are -7 and 10 respectively.

Sol. Let α , β be zeroes then, $\alpha + \beta = -7$, $\alpha\beta = 10$.

So, required polynomial p(x) is given by

$$= x^{2} - (\alpha + \beta)x + \alpha\beta = x^{2} - (-7)x + 10$$
 \therefore $p(x) = x^{2} + 7x + 10$

Q.14 Write a quadratic polynomial, whose zeroes are $\frac{2}{3}$ and 5.

Sol. Let
$$\alpha = \frac{2}{3}$$
, $\beta = 5$, $\alpha + \beta = \frac{2}{3} + 5 = \frac{2+15}{3} = \frac{17}{3}$, $\alpha \times \beta = \frac{2}{3} \times 5 = \frac{10}{3}$

So, required polynomial p(x) is given by
$$= x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - \frac{17}{3}x + \frac{10}{3}, \frac{1}{3}(3x^2 - 17x + 10)$$

- **Q.15** Find the polynomial having $5 \pm \sqrt{3}$ as its zeroes.
- **Sol.** Let $\alpha = 5+\sqrt{3}$, $\beta = 5-\sqrt{3}$ $\alpha + \beta = 5 + \sqrt{3} + 5 \sqrt{3} = 10$, $\alpha \times \beta = (5+\sqrt{3}) + (5-\sqrt{3}) = 5^2 - (\sqrt{3})^2 = 25 - 3 = 22$ $= x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - (10)x + 22$ \therefore $p(x) = x^2 - 10x + 22$

PRACTICE **problems**

- 10. Find a quadratic polynomial, the sum and the product of whose zeroes are $-5 \& \frac{1}{2}$ respectively.
- 11. Find a quadratic polynomial whose zeroes are 8 and 10.
- 12. Find a quadratic each with the given numbers as the sum and product of its zeroes respectively.

(i) 5, -2 (ii) a-b, -ab (iii) -4, -21 (iv) -3, -3 (v)
$$3-\sqrt{2}, -3\sqrt{2}$$

13. Form quadratic polynomial each with given pair of zeroes as

(i)
$$\left(5, -\frac{1}{5}\right)$$
 (ii) $2+3\sqrt{5}, 2-3\sqrt{5}$ (iii) $\left(\frac{2a+b}{3}, \frac{a-2b}{3}\right)$ (iv) $p^2 + q^2, p^2 - q^2$

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334

DIVISION ALGORITHM FOR POLYNOMIALS

- 1. If p(x) and q(x) are any two polynomials then we always have polynomials q(x) and r(x) such that p(x) = g(x). q(x) + r(x) where $g(x) \neq 0$ and r(x) = 0 or degree of r(x) < degree of g(x).
- **2.** In particular, if r(x) = 0, then g(x) is a divisor of p(x) so g(x) is a factor of p(x).

ILLUSTRATION

Q.16 Divide $p(x) = x^2 + 3x^3 + 2x + 5$ (cubic polynomial) by $g(x) = 1 + 2x + x^2$ (quadratic polynomial)

Verification

Now, Divisor \times Quotient + Remainder

 $= (x^{2} + 2x + 1) (3x - 5) + (9x + 10) = 3x^{3} - 5x^{2} + 6x^{2} - 10x + 3x - 5 + 9x + 10 = 3x^{3} + x^{2} + 2x + 5 = Dividend$ Thus, the division algorithm is verified.

PRACTICE **PROBLEMS**

- 14. Divide $3x^3 5x^4 + 5x^2 + 6x 7$ by $x + 1 x^2$ and verify the division algorithm.
- **15.** Divide $3x^2 + 5x + 11$ by x + 3 and verify the division algorithm.
- 16. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial with the first polynomial: $x^2 2x + 1$, $x^4 2x^3 + 2x^2 2x + 1$.

PRACTICE PROBLEMS ANSWERS

1.	(i) Polynom	nial (ii)	Polynon	nial (iii)	Not a pol	ynomial	(iv) Not	a polyr	nomial	(v) Polyr	nomial (vi)	Not a	polynomial
2.	(i) 2		(ii) 3		(iii) 4			(iv)	1		(v)	4	(vi) 0
3.	(i) Quadrat	ic	(ii) Bi-Qu	uadratic	(iii) Co	onstant		(iv)	Linear		(v)	Cubic	
4.	(i) 3, −2	(ii) –2,	2 (iii)) 0, -6	(iv) -2/3	, 1/3 (v) -5/2,	-5/2	(vi) ₂ ,	$\sqrt{2}, 2\sqrt{2}$	(vii) 0,) 0	viii) 3,–43
5.	(i) 2		(ii) 2		(iii)	0		(iv)	6				
6.	Option (d)	is not a	quadratic	polynon	nial								
7.	(i) 2	(ii) 3	(ii	i) 0	(iv) 4	(v)	2	(vi) 2		(vii) 0	(viii)	1	
8.	(i) -9, 4	(ii) –2	/3, 1/3	(iii) 3/2	, –1/3	(iv) 0, -4	(v) (), –2	(vi) 0,	9/5 (v	ii) 3, –3	(viii)	$\sqrt{\frac{5}{3}}, -\sqrt{\frac{5}{3}}$
9.	(i) $\frac{34}{25}$		(ii) $\frac{34}{15}$		(iii) $\frac{19}{25}$	$\frac{9}{5}$		(iv)	$\frac{95}{27}$		(v)	$\frac{19}{15}$	
10.	$x^2 - 5x + 1$	/2 or	$2x^2 - 10x$	x + 1	11. x ²	-18x + 8	30	12.	(i) P(x)	$= x^2 - 5$	x – 2		
	(ii) $P(x) = x$	$x^2 - (a - b)$	b)x – ab	(iii	P(x) = x	$x^{2} + 4x - 2$	21 (iv)	P(x) =	$x^{2} + 3x$	-3 (v)	P(x) = x2	- (3 - 1	$\sqrt{2}$ x - $3\sqrt{2}$
13.	(i) $P(x) = 5$	$5x^2 - 24z$	x – 5	(ii)	$\mathbf{P}(\mathbf{x}) = \mathbf{x}^2$	$x^{2} - 4x - 4$	1 (iii)	P(x) =	$9x^2 - 3($	(3a – b)x	$+(2a^2-3a^2)$	ab – 21	b ²)
	(iv) P (x) =	$x^2 - 2P$	$^{2}x + p^{4} +$	q^4	14. q	$(\mathbf{x}) = -5\mathbf{x}^2$	$^{2}-8x-$	18 ; r((x) = 32	x + 11			
15.	q(x) = 3x -	-4; r((x) = 23		16. Y	es, q(x) =	$x^{2} + 1$; r(x) =	= 0.				

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334

X MATHS POLYNOMIALS (EXCERCISE)

A. ZEROES OF POLYNOMIAL & VERIFY RELATIONSHIP BETWEEN ZEROES & COEFFICIENT
 Find zeroes of following polynomials & hence verify the relationship between zeroes and coefficient of polynomials: (Q. 1 - Q. 19)

- 1. $P(x) = x^2 + 5x + 6$ **2.** $P(x) = x^2 - 7x + 10$ **3.** $P(x) = x^2 + x - 6$ 4. $P(x) = 6x^2 - 7x - 3$ **7.** $P(x) = x^2 - 3$ 8. $P(x) = x^2 - 5$ 5. $P(x) = 3x^2 - 17x - 6$ **6.** $P(x) = 4x^2 - 4x + 1$ 9. $P(x) = 8x^2 - 4$ **10.** $P(u) = 5u^2 + 10u$ **11.** $P(x) = 9x^2 - 3x$ 12. $P(y) = 12y^2 - 5y$ **13.** $P(x) = \sqrt{3}x^2 + 10x + 7\sqrt{3}$ **14.** $P(x) = x^2 - (\sqrt{3} + 1)x + \sqrt{3}$ **15.** $P(x) = 4\sqrt{3}x^2 + 5x - 2\sqrt{3}$ **16.** $P(x) = a (x^2 + 1) - x (a^2 + 1)$ **17.** P (x) = $abx^2 + (b^2 - ac)x - bc$ **18*.**P (x) = $2x^3 + x^2 - 5x + 2$ **19*.** P (x) = $x^3 - 4x^2 + 5x - 2$
- **20*.** Verify that 3, -2, 1 are the zeroes of the cubic polynomial $p(x) = x^3 2x^2 5x + 6$ and verify the relation between its zeroes and coefficients.
- **21*.** Verify that 5, -2 and 1/3 are the zeroes of the cubic polynomial $p(x) = 3x^3 10x^2 27x + 10$ and verify the relation between its zeroes and coefficients.

B. FORMATION OF QUADRATIC POLYNOMIALS

Form quadratic polynomials if zeroes are given as:[USE:k(x²-(sum) x + (product)]

22. 3 and 2
 23. 3 and 1/9
 24. -5 and -6
 25. $\sqrt{3}$ and $\sqrt{5}$
26. $\sqrt{7}$ and $-\sqrt{7}$ **27.** $\frac{\sqrt{2}}{\sqrt{3}}$ and $-\frac{\sqrt{2}}{\sqrt{3}}$ **28.** $\sqrt{3}$ and $2\sqrt{3}$ **29.** $\frac{\sqrt{3}}{4}$ and $-\frac{3}{\sqrt{2}}$
30. $3+\sqrt{5} \& 3-\sqrt{5}$ **31.** $3+\sqrt{2}$ and $3-\sqrt{2}$

FORM QUADRATIC POLYNOMIALS IF SUM OF ZEROES & PRODUCT OF ZEROS ARE GIVEN AS:

34. 2/3 and -5

46. $f(x)=16+19x+x^2-6x^3 \& g(x)=2+5x-3x^2$

32. a. -5 and 6 **b.** 5/2 and 1 **33.** 0 and -9

C. FORMATION OF CUBIC POLYNOMIALS

*Form cubical poly. i	if zeroes are given as :		
35. 3, ¹ / ₂ , -1	36. -2, -3, -1	37. 1, ¹ / ₂ , -2	38. –5, 2, –14
*Form cubical polyno	omial if sum, sum of produc	ct when two are taken at a	time and product of zeroes are
given :			

39. 1, -10, 8 **40.** 4, 1, -6 **41.** 0, -19, -30 **42.** 1, ¹/₂, -2

D. DIVISION ALGORITHM & ITS APPLICATION

Divide f(x) by g(x) and find quotient & remainder, hence verify division algorithm.

- **43.** $f(x) = 2x^2 + x 15$ and g(x) = x + 3**44.** $f(x) = 16 - 17x - 5x^2$ and g(x) = 3 - 5x.
- **45.** $f(x) = 3x^3 4x^2 + 7x 2$ and $g(x) = 2 x + x^2$

Check whether the first polynomial is a factor of second polynomial by applying the division algorithm : (Q. 47 to Q. 48)

- **47.** $g(t) = t^2 3$, $f(t) = 2t^4 + 3t^3 2t^2 9t 12$ **48.** $g(x) = x^3 - 3x + 1$, $f(x) = x^5 - 4x^3 + x^2 + 3x + 1$
- **49.** On dividing $3x^3 + 4x^2 + 5x 13$ by g(x), the quotient and remainder are (3x+10) and (16x-43) respectively. Find g(x). HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334

- 50. Divide $2x^4 9x^3 + 5x^2 + 3x 8$ by $x^2 4x + 1$ and verify the division algorithm.
- **51.** On dividing $5x^4 4x^3 + 3x^2 2x + 1$ by $x^2 + 2$, if the quotient is $ax^2 + bx + c$, find a, b, c.
- **52.** Divide $6x^3 + 13x^2 + x 2$ by 2x + 1, find the quotient and remainder.
- **53.** Divide $30x^4 + 11x^3 82x^2 12x + 48$ by $3x^2 + 2x 4$ & verify division algorithm.
- **54.** On dividing the polynomial p(x) by a polynomial $g(x) = 4x^2 + 3x 2$, the quotient $q(x) = 2x^2 + x 1$ and remainder r(x) = 14x 10. Find the p(x).
- **55.** Can (x+3) be the remainder on the division of a polynomial p(x) by (2x 5)? Justify your answer?
- E. Zeroes of a cubic or biquadratic polynomial given its one or two zeroes:
 - **56.** It being given that 1 is one of the zeroes of the polynomial $f(x) = 7x x^3 6$. Find its other two zeroes.
 - **57.** Polynomial P (x) = $x^3 + 13x^2 + 32x + 20$, has -2 as one zero, then find other two zeroes.
 - **58.** Polynomial $p(x) = 3x^3 5x^2 11x 3$, has -1 as one zero, then find other two zeroes.
 - **59.** If -2 and -1 are two zeroes of the polynomial P (x) = $2x^4 + x^3 14x^2 19x 6$, then find the other two zeroes.
 - **60.** If 1 and 3 are the zeroes of polynomial, $P(x) = x^4 x^3 19x^2 + 49x 30$, then find the other two zeroes.
 - **61.** If 1 and 2 are two zeroes of polynomial $p(x) = 2x^4 6x^3 + 3x^2 + 3x 2$, then find the other two zeroes.
 - 62. Obtain all zeroes of quadratic polynomial p(x) if its two zeroes are given below:

a.p(x)= $2x^4 - 3x^3 - 3x^2 + 6x - 2$, zeroes: $\sqrt{2}$, $-\sqrt{2}$

c. p(x) =
$$2x^4 - 6x^3 + 3x^2 + 3x - 2$$
,
zeroes: $\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$

b. $p(x) = 2x^4 - 3x^3 - 5x^2 + 9x - 3$, zeroes: $\sqrt{3}, -\sqrt{3}$

d.
$$p(x) = x^4 - 7x^3 + 10x^2 + 14x - 24$$
,
zeroes: $\sqrt{2}, -\sqrt{2}$

e. p(x) = $5x^4 - 5x^3 - 33x^2 + 3x + 18$, zeroes: $\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}}$

f. $p(x) = x^4 - 3x^3 - x^2 + 9x - 6$, zeroes : $\sqrt{3}, -\sqrt{3}$

g. p(x) = $2x^4 - 10x^3 + 5x^2 + 15x - 12$, zeroes: $\sqrt{\frac{3}{2}}, -\sqrt{\frac{3}{2}}$

- h. $p(x) = x^4 + x^3 9x^2 3x + 18$, zeroes: $\sqrt{3}, -\sqrt{3}$
- i. $p(x) = x^4 6x^3 26x^2 + 138x 35$, zeroes: $2 \pm \sqrt{3}$
- 63. Two zeroes of polynomials are such that their sum is zero and the product is -6. Find its all zeores if

$$f(x) = x^4 + x^3 - 12x^2 - 6x + 36.$$

- F. Miscellaneous Problems (Polynomials)
 - **64.** If α and β are the zeroes of polynomial $x^2 (k + 6) x + 2(2k 1)$, then find the value of k if $\alpha + \beta = \frac{1}{2}\alpha \cdot \beta$.
 - **65.** If α and β are zeroes of the polynomials such that $\alpha + \beta = 24$ and $\alpha \beta = 8$, find the quadratic polynomials.
 - 66. If α and β are the zeroes of polynomial $x^2 6x + a$, then find the value of 'a' if $3\alpha + 2\beta = 20$
 - 67. If α and β are the zeroes of polynomial $x^2 5x + 5$, then find the value of $\alpha^{-1} + \beta^{-1}$.
 - **68.** If one solution of the quadratic polynomial $3x^2 8x + 2k + 1$ is seven times the other. Find the solutions & the value of k.
 - **69.** If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 x 4$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} \alpha\beta$.
 - **70.** If α and β are the zeroes of polynomial $3x^2 + 5x 2$, then form a quadratic polynomial whose zeroes are 2α and 2β .
 - 71. If α and β are the zeroes of polynomial $x^2 2x + 5$, then form a quadratic polynomial whose zeroes are $\alpha + \beta$ and $\frac{1}{\alpha} + \frac{1}{\beta}$
 - 72. If α and β are the zeroes of polynomial $x^2 2x 8$, then form a quadratic polynomial whose zeroes are 3α and 3β .
 - **73.** If α and β are the zeroes of polynomial $x^2 3x + 7$, then form a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
 - 74. If α and β are the zeroes of polynomial $25p^2 15p + 2$, then form a quadratic polynomial whose zeroes are $\frac{1}{2\alpha}$ and $\frac{1}{2\beta}$
 - **75.** If α and β are the zeroes of polynomial $21x^2 x 2$, then form a quadratic polynomial whose zeroes are 2α and 2β .
 - **76.** If α and β are the zeroes of the quadratic polynomial $f(x) = 6x^2 + x 2$, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.
 - 77. What must be added to the polynomial $p(x) = 5x^4 + 6x^3 13x^2 44x + 7$ so that the resulting polynomials is exactly divisible by the polynomial $q(x) = x^2 + 4x + 3$ and the degree of the polynomial be added must be less than degree of the polynomial q(x).
 - **78.** Given that the sum of the zeroes of the polynomial $(a + 1) x^2 + (2a + 3) x + (3a + 4)$ is -1. Find the product of its zeroes.
 - **79.** If α and β are zeroes of the polynomials $f(x)=x^2-8x+k$ such that $\alpha^2+\beta^2=40$, find 'k'.
 - 80. If $\alpha \& \beta$ are zeroes of the polynomials $f(x)=x^2+px+45$ such that squared difference of the zeroes is 144 find the value of 'p'.
 - **81.** If α and β are zeroes of the polynomials $f(x) = kx^2 + 2x + 3k$ such that sum of zeroes is equal to the product of zeros, find the value of 'k'.
 - 82. If α and β are zeroes of the polynomials f (x) = 4x² 8kx 9 such that zeroes are opposite in nature and equal in magnitude then, find the value of 'k'.
 - 83. Find the zeroes of the polynomials $f(x) = x^3 12x^2 + 39x 28$, if zeroes are a b, a, a + b.
 - 84. Find the value of 'a' and 'b' if polynomials $f(x) = x^3 3x^2 + x + 1$ has three zeroes as a b, a, a + b.
 - **85.** If α , β and γ are the zeores of the polynomials $6x^3 + 3x^2 5x + 1$, then find the value of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334

- **86.** Find the values of 'a' and 'b' so that $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$.
- 87. If polynomial $f(x) = x^4 6x^3 + 16x^2 25x + 10$ is divisible by another polynomial $g(x) = x^2 2x + k$, the remainder comes out to be x + a, find 'k' and 'a'.
- **88.** If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be (ax + b), find a and b.
- **89.** If $x^3 + 2x^2 + 4x + b$ is divided by x + 1, then the quotient and remainder are $x^2 + ax + 3$ and 2b 3 respectively. Find the values of a and b.
- **90.** $4x^3 8x^2 + 8x + 1$, when divided by a polynomial g(x) gives (2x 1) as quotient and x + 3 as remainder. Find g(x).
- **91.** What must be added to the polynomial $f(x) = x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by $x^2 + 2x 3$?
- **92.** What must be subtracted from $8x^4 + 14x^3 2x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x 2$.
- **93.** Remainder on dividing x^3+2x^2+kx+3 by (x 3) is 21. Mody was asked to find the quotient. He was a little puzzled and was thinking how to proceed. His classmate Arvind helped him by suggesting that he should first find the value of k and then proceed further. Explain how the question was solved? What value is indicated from this action of Arvind?
- 94. If (x + a) is a factor of two polynomials $x^2 + px + q$ and $x^2 + mx + n$, then prove that $a = \frac{n-q}{m-p}$
- **95.** If the sum of the zeroes of the polynomial $p(x) = (a+1)x^2 + (2a+3)x + (3a+4)$ is -1, then find the product of its zeroes.

ANSWERS

A. ZEROES OF POLYNOMIAL & VERIFY RELATIONSHIP BETWEEN ZEROES & COEFFICIENT

1.
$$-3, -2$$
 2. $5, 2$ **3.** $2, -3$ **4.** $\frac{3}{2}, \frac{-1}{3}$ **5.** $6, \frac{-1}{3}$ **6.** $\frac{1}{2}, \frac{1}{2}$
7. $-\sqrt{3}, \sqrt{3}$ **8.** $-\sqrt{5}, \sqrt{5}$ **9.** $\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ **10.** $0, -2$ **11.** $0, \frac{1}{3}$ **12.** $0, \frac{5}{12}$
13. $-\sqrt{3}, -\frac{7}{\sqrt{3}}$ **14.** $1, \sqrt{3}$ **15.** $\frac{\sqrt{3}}{4}, \frac{-2}{\sqrt{3}}$ **16.** $a, \frac{1}{a}$ **17.** $\frac{-b}{a}, \frac{c}{b}$ **18.** $1, \frac{1}{2}, -2$ **19.** $1, 1, 2$
B. FORMATION OF QUADRATIC POLYNOMIALS
22. $k[x^2-5x+6]$ **23.** $k[9x^2-28x+3]$ **24.** $k[x^2+11x+30]$ **25.** $k[x^2-(\sqrt{3}+\sqrt{5})+\sqrt{15}]$
26. $k(x^2-7)$ **27.** $k[3x^2-2]$ **28.** $k[x^2-3\sqrt{3}x+6]$ **29.** $k[4\sqrt{2}+(12-\sqrt{6})x-3\sqrt{3}]$
30. $k[x^2-6x+4]$ **31.** $k[x^2-6x+7]$ **32. a.** $k[x^2+5x+6]$ **b.** $k[2x^2-5x+2]$ **33.** $k[x^2-9]$
34. $k[3x^2-2x-15]$

- C. FORMATION OF CUBIC POLYNOMIALS
 - **35.** $k[2x^3 5x^2 4x + 3]$ **36.** $k[x^3 + 6x^2 + 11x + 6]$ **37.** $k[2x^3 + x^2 5x + 2]$

HEAD OFFICE : B-1/30, MALVIYA NAGAR PH. 26675331, 26675333, 26675334

38. $k[x^3+17x^2+3x-140]$			39. $k[x^3 - x^2 - 1]$	0x-8	40. $k[x^3 - 4x^2 + x + 6]$		
	41. $\mathbf{x} \mathbf{k} [\mathbf{x}^3 - 19\mathbf{x} + $	- 30]	42. $k[x^3 + 17x^2 +$	-32x - 140]			
D.	DIVISION ALGORITH						
	43. 2x – 5,0	44. x + 4, 4	45. 3x −1,0	46. 2x + 3,10	47. Yes	48. No	
	49. $x^2 - 2x + 3$	51. 5, -4, -7	52. $3x^2 + 5x - 2$,0	54. $8x^4 + 10x^3 - 5x^3$	$x^{2} + 9x - 8$	
E.	55. No, as degree of remainder is always less than the degree of divisor. ZEROES OF A CUBIC OR BIQUADRATIC POLYNOMIAL GIVEN ITS ONE OR TWO ZEROES:						
	56. 2, -3	57. -1, -10	58. 3, $-\frac{1}{3}$	59. $3, -\frac{1}{2}$	60. –5, 2	61. $\pm \frac{1}{\sqrt{2}}$	
	62. a. $1, \frac{1}{2}$ b. $\frac{1}{2}$,	1 c. 1, 2 d. 3, 4	e. −2,3 f. 1,2	g. 1, 4 h. 2,−3	i. 7,–5	63. 2,-3	
F.	MISCELLANEOUS PROBLEMS (POLY.)						
	64. k = 7	65. $k(x^2 - 24x + 128)$;)	66. a = -16	67. 1 68. $\frac{1}{3}, \frac{7}{3}$ are	e roots $k = \frac{2}{3}$	
	69. $\frac{15}{7}$	70. $3x^2 + 10x - 8$		71. $5x^2 - 12x + 4$	72. $x^2 - 6x - 72$		
	73. $7x^2 - 3x + 1$	74. $8p^2 - 30p + 25$		75. $21x^2 - 2x - 8$	76. $\frac{-25}{12}$		
	77. 114x + 77	78. 2	79. 12	80. $(\alpha - \beta)^2 = 144$	81. $\frac{-2}{3}$		
	82. k = 0	83. 1, 4, 7	84. $1 - \sqrt{2}, 1, 1 + \sqrt{2}$	$\sqrt{2}$	85. 5		
	86. a = 1, b = 7	87. k = 5, a = −5	88. a = 1, b = 2	89. a = 1, b = 0	90. $2x^2 - 3x + 2$	91. x – 2	
	92. 14x – 10	93. $Q(x) = x^2 + 5x$	+ 6, The action ind	icates helping nature o	f the student.	95. 2	