EXERCISE 6.1

Choose the correct answer from the given four options:

Q1. In the given figure, if $\angle \mathrm{BAC}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. Then,
(a) $\mathrm{BD} \cdot \mathrm{DC}=\mathrm{BC}^{2}$
(b) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{BC}^{2}$
(c) $\mathrm{BD} \cdot \mathrm{CD}=\mathrm{AD}^{2}$
(d) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{AD}^{2}$

Sol. (c): In $\triangle A D C$ and $\triangle A D B$,

$$
\begin{aligned}
\angle \mathrm{BDA} & =\angle \mathrm{ADC}=90^{\circ} \quad[\text { Given }] \\
\angle \mathrm{B} & =\angle \mathrm{DAC}=\left(90^{\circ}-\mathrm{C}\right) \\
\therefore \quad \triangle \mathrm{ADB} & \sim \triangle \mathrm{CDA}
\end{aligned}
$$

[By AA similarity critierion]
$\Rightarrow \quad \frac{\mathrm{AD}}{\mathrm{CD}}=\frac{\mathrm{AB}}{\mathrm{CA}}=\frac{\mathrm{DB}}{\mathrm{DA}}$

$\therefore \quad \mathrm{AD}^{2}=\mathrm{BD} \cdot \mathrm{DC}$
Q2. The lengths of the diagonals of a rhombus are 16 cm and 12 cm . Then, the length of the side of the rhombus is
(a) 9 cm
(b) 10 cm
(c) 8 cm
(d) 20 cm

Sol. (b): Let the length of the side of the rhombus is $a \mathrm{~cm}$.
As the diagonals of rhombus bisect at 90° so by Pythagoras theorem in right angled $\triangle \mathrm{OAB}$,

$$
\left.\begin{array}{rl}
a^{2} & =\left(\frac{d_{1}}{2}\right)^{2}+\left(\frac{d_{2}}{2}\right)^{2} \\
& =\left(\frac{12}{2}\right)^{2}+\left(\frac{16}{2}\right)^{2} \\
& =(6)^{2}+(8)^{2}=36+64 \\
\Rightarrow \quad & a^{2} \\
\Rightarrow \quad & a
\end{array}\right)=100 \mathrm{~cm}
$$

Q3. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$ and $\triangle \mathrm{ABC}$ is not similar to $\triangle \mathrm{DEF}$, then which of the following is not true?
(a) $\mathrm{BC} \cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{FD}$
(b) $\mathrm{AB} \cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DE}$
(c) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF}$
(d) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{FD}$

Sol. (c): $\triangle \mathrm{ABC} \sim \Delta \mathrm{EDF}$

$$
\begin{equation*}
\frac{\mathrm{AB}}{\mathrm{ED}}=\frac{\mathrm{AC}}{\mathrm{EF}}=\frac{\mathrm{BC}}{\mathrm{DF}} \tag{i}
\end{equation*}
$$

So, every statement will be true if it satisfies the above relation, i.e., LHS from option and RHS from (i).
(a) $\mathrm{BC} \cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DF} \quad$ True
(b) $\mathrm{AB} \cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DE} \quad$ True
(c) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF} \quad$ False
(d) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{DF} \quad$ True

Q4. If in two triangles $A B C$ and $P Q R, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
(a) $\triangle \mathrm{PQR} \sim \Delta \mathrm{CAB}$
(b) $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$
(c) $\triangle \mathrm{CBA} \sim \triangle \mathrm{PQR}$
(d) $\triangle \mathrm{BCA} \sim \triangle \mathrm{PQR}$

Sol. (a): Here, vertex P corresponds to vertex C, vertex Q corresponds to vertex A and vertex R corresponds to vertex B. Symbolically, we write the similarity of these two triangles as $\triangle \mathrm{PQR} \sim \Delta \mathrm{CAB}$.
Hence, (a) is the correct answer.
Q5. In the given figure, two line segments AC and BD intersect each other at P such that $P A=6 \mathrm{~cm}$, $\mathrm{PB}=3 \mathrm{~cm}, \mathrm{PC}=2.5 \mathrm{~cm}, \mathrm{PD}=5 \mathrm{~cm}$, $\angle \mathrm{APB}=50^{\circ}$ and $\angle C D P=30^{\circ}$, then $\angle \mathrm{PBA}$ is equal to
(a) 50°
(b) 30°
(c) 60°
(d) 100°

Sol. (d): Considering $\triangle \mathrm{APB}$ and
 \triangle DPC

$$
\begin{aligned}
& \frac{\mathrm{PA}}{\mathrm{PC}}=\frac{6.0}{2.5}=\frac{12}{5} \\
& \frac{\mathrm{~PB}}{\mathrm{PD}}=\frac{3}{5} \neq \frac{\mathrm{PA}}{\mathrm{PC}}
\end{aligned}
$$

So, the above solution is rejected.

$$
\begin{array}{ll}
\text { Now, } & \frac{\mathrm{PA}}{\mathrm{PD}}=\frac{6}{5} \\
& \frac{\mathrm{~PB}}{\mathrm{PC}}=\frac{3.0}{2.5}=\frac{6}{5} \\
& \\
\Rightarrow & \\
& \\
& \angle \mathrm{PA} \\
& \\
& \angle \mathrm{APB}=\frac{\mathrm{PB}}{\mathrm{PC}} \\
\therefore & \\
& \triangle \mathrm{APB}=\triangle \mathrm{CPD}=50^{\circ} \\
& \\
\angle \mathrm{PBA}=\angle \mathrm{PCCD}
\end{array}
$$

In $\triangle \mathrm{DPC}, \quad \angle \mathrm{DPC}=\angle \mathrm{APB}=50^{\circ}$ $\angle \mathrm{D}=30^{\circ}$
[Vertically opp \angle s]
[By SAS similarity criterion]
[\because Corresponding $\angle \mathrm{s}$ of similar Δ s are equal]
[Vertically opp. \angle s]

$$
\begin{array}{ll}
\therefore & \angle \mathrm{PCD}=\angle \mathrm{C}=180^{\circ}-50^{\circ}-30^{\circ}=180-80^{\circ}=100^{\circ} \\
\Rightarrow & \\
\Rightarrow & \angle \mathrm{PBA}=100^{\circ} \text { verifies the option }(d) .
\end{array}
$$

Q6. If in two triangles DEF and $\mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q}$ and $\angle \mathrm{R}=\angle \mathrm{E}$, then which of the following is not true?
(a) $\frac{\mathrm{EF}}{\mathrm{PR}}=\frac{\mathrm{DF}}{\mathrm{PQ}}$
(b) $\frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}}$
(c) $\frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}}$
(d) $\frac{\mathrm{EF}}{\mathrm{RP}}=\frac{\mathrm{DE}}{\mathrm{QR}}$

Sol. (b): In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$,

$$
\left.\begin{array}{rlrl}
& & \angle \mathrm{D} & =\angle \mathrm{Q} \\
\therefore & & \angle \mathrm{E} & =\angle \mathrm{R} \\
\therefore & & \angle \mathrm{~F} & =\angle \mathrm{P}
\end{array}\right\} \text { [Given] }
$$

Hence, (b) is not true.
Q7. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{F}=\angle \mathrm{C}$ and $\mathrm{AB}=3 \mathrm{DE}$. Then, the two triangles are
(a) congruent but not similar
(b) similar but not congruent
(c) neither congruent nor similar (d) congruent as well as similar

Sol. (b): In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,

$$
\left.\begin{array}{l}
\angle \mathrm{B}=\angle \mathrm{E} \\
\angle \mathrm{C}=\angle \mathrm{F}
\end{array}\right\}
$$

$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
[Given]
[By AA similarity criterion]

So, AB and DE sides are corresponding sides.
But,

$$
\mathrm{AB}=3 \mathrm{DE}
$$

So, $\triangle \mathrm{ABC}$ cannot be congruent to $\triangle \mathrm{DEF}$.
So, $\Delta \mathrm{s}$ are similar but not congruent.
Q8. It is given that $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$, with $\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{1}{3}$. Then $\frac{\operatorname{ar}(\triangle \mathrm{PRQ})}{\operatorname{ar}(\triangle \mathrm{BCA})}$ is
equal to
(a) 9
(b) 3
(c) $\frac{1}{3}$
(d) $\frac{1}{9}$

Sol. (a): $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
[Given]
$\therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
[By area theorem]
or $=\frac{\operatorname{ar}(\triangle \mathrm{PQR})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{9}{1}$
Hence, verifies option (a).

Q9. It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}$, $\angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{DF}=7.5 \mathrm{~cm}$, then which of the following is true?
(a) $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{~F}=50^{\circ}$
(b) $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{~F}=100^{\circ}$
(c) $\mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ}$
(d) $\mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ}$

Sol. (b): $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

Now, $\angle \mathrm{A}=\angle \mathrm{D}=30^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{B}=\angle \mathrm{F}=180^{\circ}-30^{\circ}-50^{\circ}=100^{\circ} \\
& \angle \mathrm{C}=\angle \mathrm{E}=50^{\circ}
\end{aligned}
$$

\therefore Verifies the option (b) i.e., $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{~F}=100^{\circ}$.
Q10. If in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}}$, then they will be similar, when
(a) $\angle \mathrm{B}=\angle \mathrm{E}$
(b) $\angle \mathrm{A}=\angle \mathrm{D}$
(c) $\angle \mathrm{B}=\angle \mathrm{D}$
(d) $\angle \mathrm{A}=\angle \mathrm{F}$

Sol. (c): In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}}
$$

Angle formed by AB and BC is $\angle \mathrm{B}$. Angle formed by DE and FD is $\angle \mathrm{D}$.

So,

$$
\angle \mathrm{B}=\angle \mathrm{D}
$$

$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$

[By SAS similarity criterion]

Hence, (c) is the correct answer.
Q11. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\Delta \mathrm{PQR})}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm}$ and $\mathrm{BC}=15 \mathrm{~cm}$, then $P R$ is equal to
(a) 10 cm
(b) 12 cm
(c) $\frac{20}{3} \mathrm{~cm}$
(d) 8 cm

Sol. (a): $\because \quad \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}$
[Given]
$\begin{aligned} & \therefore & \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{QRP})} & =\frac{\mathrm{BC}^{2}}{\mathrm{RP}^{2}}=\frac{\mathrm{AB}^{2}}{\mathrm{QR}^{2}} \\ & \Rightarrow & \frac{9}{4} & =\frac{15^{2}}{\mathrm{RP}^{2}}=\frac{18^{2}}{\mathrm{QR}^{2}}\end{aligned}$
[By area theorem]

$$
\begin{array}{ll}
\Rightarrow & \mathrm{RP}^{2}=\frac{15 \times 15 \times 4}{9} \\
\Rightarrow & \mathrm{RP}^{2}=100 \\
\Rightarrow & \mathrm{RP}=10 \mathrm{~cm}
\end{array}
$$

Hence, verifies the option (a).
Q12. If S is a point on side $P Q$, of a $\triangle P Q R$ such that $P S=S Q=R S$, then
(a) $\mathrm{PR} \cdot \mathrm{QR}=\mathrm{RS}^{2}$
(b) $\mathrm{QS}^{2}+\mathrm{RS}^{2}=\mathrm{QR}^{2}$
(c) $\mathrm{PR}^{2}+\mathrm{QR}^{2}=\mathrm{PQ}^{2}$
(d) $\mathrm{PS}^{2}+\mathrm{RS}^{2}=\mathrm{PR}^{2}$

Sol. (c): In $\triangle \mathrm{PQR}$,

$$
\mathrm{PS}=\mathrm{SQ}=\mathrm{RS}
$$

Now, in $\triangle \mathrm{PSR}$,

$$
\begin{array}{ll}
& \mathrm{PS}=\mathrm{SR} \\
\therefore & \angle \mathrm{P}=\angle 1
\end{array}
$$

[Angles opposite to equal sides in a triangle are equal]
Similarly, in $\angle \mathrm{SRQ}$,

$$
\angle \mathrm{Q}=\angle 2
$$

Now, in $\triangle \mathrm{PQR}$,

$$
\begin{array}{rlrl}
& & \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R} & =180^{\circ} \text { [Angle sum property of a triangle] } \\
\Rightarrow & \angle 1+\angle 2+(\angle 1+\angle 2) & =180^{\circ} \\
\Rightarrow & 2(\angle 1+\angle 2) & =180^{\circ} \\
\Rightarrow & \angle 1+\angle 2 & =90^{\circ} \\
\Rightarrow & \angle \mathrm{PRQ} & =90^{\circ}
\end{array}
$$

By Pythagoras theorem, we have

$$
P Q^{2}=P R^{2}+R Q^{2}
$$

Hence, verifies the option (c).

EXERCISE 6.2

Q1. Is the triangle with sides $25 \mathrm{~cm}, 5 \mathrm{~cm}$, and 24 cm a right triangle? Give reasons for your answer.
Sol. False: By converse of Pythagoras theorem, this Δ will be right angle triangle if

$$
\begin{aligned}
& & (25)^{2} & =(5)^{2}+(24)^{2} \\
\Rightarrow & & 625 & =25+576 \\
\Rightarrow & & 625 & \neq 601
\end{aligned}
$$

So, the given triangle is not right angled triangle.
Q2. It is given that $\triangle \mathrm{DEF} \sim \triangle \mathrm{RPQ}$. Is it true to say that $\angle \mathrm{D}=\angle \mathrm{R}$ and $\angle \mathrm{F}=\angle \mathrm{P}$? Why?
Sol. False: When $\triangle \mathrm{DEF} \sim \triangle \mathrm{RPQ}$, each angle of a triangle will be equal to the corresponding angle of similar triangle so

$$
\angle \mathrm{D}=\angle \mathrm{R}
$$

$$
\begin{aligned}
& \angle \mathrm{E}=\angle \mathrm{P} \\
& \angle \mathrm{~F}=\angle \mathrm{Q}
\end{aligned}
$$

So, $\angle \mathrm{D}=\angle \mathrm{R}$ is true but $\angle \mathrm{F} \neq \angle \mathrm{P}$.
Hence, it is not true that $\angle \mathrm{D}=\angle \mathrm{R}$ and $\angle \mathrm{F}=\angle \mathrm{P}$.
Q3. A and B are respectively the points on the sides $P Q$ and $P R$ of a $\triangle P Q R$ such that $\mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm}$ and $\mathrm{PB}=4 \mathrm{~cm}$. Is $\mathrm{AB}|\mid \mathrm{QR}$? Give reasons for your answer.
Sol. True: By converse of BPT, AB will be parallel to QR if AB , divides PQ and $P R$ in the same ratio i.e.,

$$
\begin{array}{rlrl}
\frac{\mathrm{AP}}{\mathrm{AQ}} & =\frac{\mathrm{PB}}{\mathrm{BR}} \\
\Rightarrow & \frac{5}{12.5-5} & =\frac{4}{6} \\
\Rightarrow & \frac{5.0}{7.5} & =\frac{2}{3} \quad \text { or } \quad \frac{2}{3}=\frac{2}{3}
\end{array}
$$

So, $A B$ is parallel to $Q R$. Hence, the given statement $A B \| Q R$ is true.
Q4. In the given figure, BD and CE intersect each other at P . Is $\triangle \mathrm{PBC} \sim$ \triangle PDE? Why?
Sol. True: In $\triangle \mathrm{PBC}$ and $\triangle \mathrm{PDE}$, we have

$$
\begin{aligned}
\angle \mathrm{BPC} & =\angle \mathrm{DPE} \\
\frac{\mathrm{BP}}{\mathrm{PD}} & =\frac{5}{10}=\frac{1}{2} \\
\frac{\mathrm{PC}}{\mathrm{PE}} & =\frac{6}{12}=\frac{1}{2} \\
\therefore \quad \frac{\mathrm{BP}}{\mathrm{PD}} & =\frac{\mathrm{PC}}{\mathrm{PE}}
\end{aligned}
$$

Hence, $\triangle \mathrm{BPC} \sim \Delta \mathrm{DPE}$ [By SAS similarity criterion]
Hence, the given statement is true.
Q5. In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ}, \angle \mathrm{S}=25^{\circ}$.
Is $\triangle \mathrm{QPR} \sim \Delta \mathrm{TSM}$? Why?
Sol. False: $\triangle \mathrm{QPR}$ and $\triangle \mathrm{TSM}$ will be similar if its corresponding angles are equal

$$
\begin{array}{rlrl}
\angle \mathrm{Q} & =25^{\circ} \\
\Rightarrow & & \angle \mathrm{P} & =55^{\circ} \\
\angle \mathrm{R} & =180^{\circ}-\left(25^{\circ}+55^{\circ}\right) \\
& & & =180^{\circ}-80^{\circ} \\
\Rightarrow \quad & \angle \mathrm{R} & =100^{\circ} \\
\angle \mathrm{S} & =25^{\circ}
\end{array}
$$

So, $\Delta \mathrm{QPR}$ is not similar to $\Delta \mathrm{TSM}$. So, the given statement $\Delta \mathrm{QPR} \sim \Delta \mathrm{TSM}$ is false.
Q6. Is the following statement true? Why?
"Two quadrilaterals are similar if their corresponding angles are equal". Sol. False: Two quadrilaterals will be similar if their corresponding angles as well as ratio of sides are also equal. So, the given statement is false.
Q7. Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?
Sol. True: Let the two sides of $\triangle \mathrm{ABC}$ are $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$ and perimeter $A B+B C+A C=13 \mathrm{~cm}$, then $B C=13-7=6 \mathrm{~cm}$.
According to the question, the sides of another $\triangle \mathrm{DEF}$ are

$$
\begin{aligned}
& \mathrm{DE}=3 \times 3=9 \\
& \mathrm{DF}=3 \times 4=12
\end{aligned}
$$

and

$$
\mathrm{DE}+\mathrm{DF}+\mathrm{EF}=3 \times 13=39
$$

So,

$$
\mathrm{EF}=39-12-9=18
$$

$$
\therefore \quad \frac{\mathrm{DE}}{\mathrm{AB}}=\frac{9}{3}=\frac{3}{1}
$$

$$
\frac{\mathrm{DF}}{\mathrm{AC}}=\frac{12}{4}=\frac{3}{1}
$$

$$
\frac{E F}{B C}=\frac{18}{6}=\frac{3}{1}
$$

$$
\therefore \quad \frac{\mathrm{DE}}{\mathrm{AB}}=\frac{\mathrm{DF}}{\mathrm{AC}}=\frac{\mathrm{EF}}{\mathrm{BC}}=\frac{3}{1}
$$

As the ratio of corresponding sides in two $\Delta \mathrm{s}$ are same then $\triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$ by SSS similarity criterion.
Hence, the triangles are similar or the given statement is true.
Q8. If in two right triangles, one of the acute angles of one triangle is equal to an acute angle of the other triangle, can you say that two triangles will be similar? Why?
Sol. True: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,

$$
\begin{aligned}
& \angle \mathrm{M}=100^{\circ} \\
& \Rightarrow \quad \angle \mathrm{T}=180^{\circ}-\left(100^{\circ}+25^{\circ}\right)=55^{\circ} \\
& \therefore \quad \angle \mathrm{Q} \neq \angle \mathrm{T} \\
& \angle \mathrm{P} \neq \angle \mathrm{S} \\
& \angle \mathrm{R} \neq \angle \mathrm{M}
\end{aligned}
$$

$$
\begin{align*}
\angle \mathrm{B} & =\angle \mathrm{Q}=90^{\circ} & & \text { [Given] } \\
\therefore & & \angle \mathrm{C} & =\angle \mathrm{R}
\end{align*} \quad \text { [Given] }
$$

Hence, the statement that two triangles are similar is true.
Q9. The ratio of the corresponding altitudes of two similar triangles is $\frac{3}{5}$. Is it correct to say that ratio of their areas is $\frac{6}{5}$? Why?
Sol. False: If two triangles are similar, then the ratio of areas of two triangles will be equal to the square of the ratios of their corresponding sides or altitudes or angle
 bisectors,
If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, then

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AD}}{\mathrm{PM}}\right)^{2} \\
& \Rightarrow \quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\Delta \mathrm{PQR})}=\left(\frac{3}{5}\right)^{2} \\
& =\frac{9}{25} \neq \frac{6}{5}
\end{aligned}
$$

So, the given statement is false.
Q10. D is the point on side QR of $\triangle \mathrm{PQR}$ such that $\mathrm{PD} \perp \mathrm{QR}$. Will it be correct to say that $\triangle \mathrm{PQD} \sim \triangle \mathrm{RPD}$? Why?
Sol. False: In $\triangle \mathrm{PDQ}$ and $\triangle \mathrm{PDR}$,

$$
\mathrm{PD} \perp \mathrm{QR}
$$

[Given]
$\therefore \quad \angle \mathrm{PDQ}=\angle \mathrm{PDR}=90^{\circ}$
PD does not bisect $\angle \mathrm{P}$.

$$
\therefore \quad \begin{array}{ll}
\angle 1 \neq \angle 2 \\
& \angle \mathrm{Q} \neq \angle \mathrm{R} \quad[\because \mathrm{PQ} \neq \mathrm{QR}]
\end{array}
$$

Any ratio of sides are also not equal. So, $\triangle \mathrm{PDQ}$ is not similar to $\triangle \mathrm{PDR}$. Hence, the
 given statement is false.
Q11. In the given figure, $\angle \mathrm{D}=\angle \mathrm{C}$, then is it true that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$? Why?
Sol. True: In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$,

$$
\begin{array}{ll}
\angle \mathrm{D}=\angle \mathrm{C} & \text { [Given] } \\
\angle \mathrm{A}=\angle \mathrm{A} & \text { [Common] }
\end{array}
$$

$\therefore \triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$ [By AA similarity criterion]

Q12. Is it true to say that if in two triangls, an angle of one triangle is equal to an angle of another triangle and, two sides of one triangle are
proportional to the two sides of the other triangle, then triangles are similar? Give reasons for your answer.
Sol. False: Here, the ratio of two sides of a triangle is equal to the ratio of corresponding two sides of other triangle, although the one angle of one triangle is equal to one angle of other triangle but, not included angles of proportional sides are equal.

So, triangles are not similar. Hence, the given statement is false.

EXERCISE 6.3

Q1. In a $\triangle P Q R, P^{2}-\mathrm{PQ}^{2}=\mathrm{QR}^{2}$ and M is a point on side PR such that $\mathrm{QM} \perp \mathrm{PR}$. Prove that $\mathrm{QM}^{2}=\mathrm{PM} \times \mathrm{MR}$.
Sol. Given: In $\triangle P Q R$,

$$
\begin{array}{cc}
& \mathrm{PR}^{2}-\mathrm{PQ}^{2}=\mathrm{QR}^{2} \\
\Rightarrow & \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2} \\
\Rightarrow & \mathrm{PR} \text { is hypotenuse. }
\end{array}
$$

Also,

$\mathrm{QM} \perp \mathrm{PR}$
To Prove: $\quad \mathrm{MQ}^{2}=\mathrm{MP} \times \mathrm{MR}$

$$
\begin{aligned}
& \text { Proof: In } \triangle \mathrm{PQR}, \\
& \qquad \mathrm{PR}^{2}-\mathrm{PQ}^{2}=\mathrm{QR}^{2} \quad \text { [Given] }
\end{aligned}
$$

$\Rightarrow \quad \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
$\therefore \quad \angle \mathrm{PQR}=90^{\circ} \quad$ [By conv. of Pythagoras theorem]
In $\triangle \mathrm{QMP}$ and $\triangle \mathrm{QMR}$, [\because Sides QM, MP and MR form these]

$$
\mathrm{QM} \perp \mathrm{PR}
$$

$\therefore \quad \angle 1=\angle 2=90^{\circ}$

$$
\angle 3=90^{\circ}-\angle \mathrm{R}
$$

$$
\angle \mathrm{P}=90^{\circ}-\angle \mathrm{R}
$$

$$
\Rightarrow \quad \angle 3=\angle \mathrm{P}
$$

$\therefore \quad \Delta \mathrm{QMP} \sim \Delta \mathrm{QMR} \quad$ [By AA similarity criterion]
$\Rightarrow \quad \frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{\mathrm{PM}}{\mathrm{QM}}=\frac{\mathrm{QM}}{\mathrm{RM}}$
$\Rightarrow \quad \mathrm{QM}^{2}=\mathrm{PM} \times \mathrm{RM}$
Hence, proved.
Q2. Find the value of x for which $\mathrm{DE} \| \mathrm{AB}$ in the given figure.
Sol. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{AB}$.

$$
\begin{array}{lrl}
\Rightarrow & \frac{\mathrm{AD}}{\mathrm{DC}} & =\frac{\mathrm{BE}}{\mathrm{EC}} \\
\Rightarrow & \frac{3 x+19}{x+3} & =\frac{3 x+4}{x} \\
\Rightarrow & x(3 x+19) & =(x+3)(3 x+4) \\
\Rightarrow & 3 x^{2}+19 x & =3 x^{2}+4 x+9 x+12 \\
\Rightarrow & 3 x^{2}-3 x^{2}+19 x-13 x & =12
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & 6 x=12 \\
\Rightarrow & x=\frac{12}{6} \\
\Rightarrow & x=2
\end{array}
$$

Hence, the required value of x is 2 .
Q3. In the given figure, $\angle 1=\angle 2$
and $\triangle \mathrm{NQS} \cong \triangle \mathrm{MTR}$.
Prove that $\triangle \mathrm{PTS} \sim \Delta \mathrm{PRQ}$.
Sol. Given: In $\triangle P Q R$, point S is on $P Q$ and T is on $P R$
such that $\quad \angle 1=\angle 2$
and $\quad \Delta \mathrm{NSQ} \cong \triangle \mathrm{MTR}$
To prove: $\quad \Delta \mathrm{PTS} \sim \Delta \mathrm{PRQ}$

Proof: $\quad \triangle \mathrm{NSQ} \cong \triangle \mathrm{MTR}$
$\begin{array}{rlrl}\therefore & \mathrm{SQ} & =\mathrm{TR} \\ \angle 1 & =\angle 2\end{array}$
$\begin{aligned} \therefore & \mathrm{SQ} & =\mathrm{TR} \\ & \angle 1 & =\angle 2\end{aligned}$
[Given]
[CPCT] (I)
[Given]
$\therefore \quad \mathrm{PT}=\mathrm{PS} \quad$ [Sides opposite to equal angles in $\Delta \mathrm{PTS}$] (II)
$\Rightarrow \quad \frac{\mathrm{PT}}{\mathrm{TR}}=\frac{\mathrm{PS}}{\mathrm{SQ}}$
[From (I), (II)]
$\therefore \quad S T \| Q R$
[By converse of BPT]
Now, in $\triangle \mathrm{PTS}$ and $\triangle \mathrm{PRQ}$, we have

ST \| QR $\angle 1=\angle 3$ $\angle 2=\angle 4$
$\therefore \quad \Delta \mathrm{PTS} \sim \Delta \mathrm{PRQ}$
[Proved above] [Corresponding $\angle \mathrm{s}$]
[Corresponding $\angle \mathrm{s}$]
[By AA similarity criterion]

Hence, proved.
Q4. Diagonals of a trapezium PQRS intersect each other at the point O, $P Q \| R S$ and $P Q=3 R S$. Find the ratio of the areas of $\triangle P O Q$ and $\triangle R O S$.
Sol. Given: PQRS is a trapezium with $P Q \| R S$ and $P Q=3 R S$

To find: $\frac{\operatorname{ar}(\triangle \mathrm{POQ})}{\operatorname{ar}(\triangle \mathrm{ROS})}$
Proof: In $\triangle \mathrm{POQ}$ and $\triangle \mathrm{ROS}$,
$P Q \| R S$ [Given]

$\therefore \quad \angle 1=\angle 3 \quad[$ Alt. int. $\angle \mathrm{s}$]
$\angle 2=\angle 4 \quad$ [Alt. int. $\angle \mathrm{s}$]
$\therefore \quad \triangle \mathrm{POQ} \sim \Delta \mathrm{ROS} \quad$ [By AA similarity criterion]
So, $\frac{\operatorname{ar}(\triangle \mathrm{POQ})}{\operatorname{ar}(\triangle \mathrm{ROS})}=\left(\frac{\mathrm{PQ}}{\mathrm{RS}}\right)^{2}$
[By area theorem]

But,
$P Q=3 R S$
[Given]
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle \mathrm{POQ})}{\operatorname{ar}(\triangle \mathrm{ROS})}=\left(\frac{3 \mathrm{RS}}{\mathrm{RS}}\right)^{2}=\frac{9}{1}$
Hence, the required ratio is $9: 1$.
Q5. In the given figure, if $\mathrm{AB} \| \mathrm{DC}$, and AC and PQ intersect each other at O, prove that $\mathrm{OA} \cdot \mathrm{CQ}=\mathrm{OC} \cdot \mathrm{AP}$
Sol. Given: $\square \mathrm{ABCD}$,
AB \| DC
and PQ intersect AC at O (in figure)
To Prove: $\quad \mathrm{OA} \cdot \mathrm{CQ}=\mathrm{OC} \cdot \mathrm{AP}$

Proof: In $\triangle \mathrm{OPA}$ and $\triangle \mathrm{OQC}$,

$$
\left.\begin{array}{rlrl}
\angle 1 & =\angle 2 \\
\angle 3 & =\angle 4
\end{array}\right\}, ~ 子 \begin{array}{ll}
\angle \mathrm{OPA} & \sim \Delta \mathrm{OQC} \\
\Rightarrow & \frac{\mathrm{OQ}}{\mathrm{OP}}
\end{array}=\frac{\mathrm{OC}}{\mathrm{OA}}=\frac{\mathrm{QC}}{\mathrm{PA}}
$$

$\therefore \quad \triangle \mathrm{OPA} \sim \Delta \mathrm{OQC} \quad$ [By AA similarity criterion]

Hence, proved.
Q6. Find the altitude of an equilateral triangle of side 8 cm .

Sol. $\triangle \mathrm{ABC}$ is an equilateral triangle.
[Given]
$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=8 \mathrm{~cm}$
$\mathrm{AD} \perp \mathrm{BC}$
$\therefore \quad \angle 1=\angle 2=90^{\circ}$
In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$,

$$
\mathrm{AB}=\mathrm{AC} \quad[\text { Sides of an equilateral } \Delta]
$$

$$
\angle 1=\angle 2=90^{\circ}
$$

$$
\mathrm{AD}=\mathrm{AD}
$$

[Common]

$\therefore \quad \Delta \mathrm{ADB} \cong \triangle \mathrm{ADC}$ [By RHS congruence criterion]
$\Rightarrow \quad B D=D C$
[CPCT]
$\therefore \quad \mathrm{BD}=\mathrm{DC}=\frac{\mathrm{BC}}{2}=\frac{\mathrm{AB}}{2}=\frac{8}{2}=4 \mathrm{~cm}$
$\therefore \quad$ By Pythagoras theorem, we have

$$
\mathrm{AD}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}
$$

$\Rightarrow \quad \mathrm{AD}^{2}+(4)^{2}=(8)^{2}$
$\Rightarrow \quad \mathrm{AD}^{2}=64-16$
$\Rightarrow \quad \mathrm{AD}^{2}=48$
$\Rightarrow \quad \mathrm{AD}=4 \sqrt{3} \mathrm{~cm}$

Q7. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm}, \mathrm{FD}=12 \mathrm{~cm}$, then find the perimeter of $\triangle A B C$.

Sol. Given: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,

$$
\begin{aligned}
\mathrm{AB} & =4 \mathrm{~cm}, & \mathrm{DE}=6 \mathrm{~cm} \\
\mathrm{EF} & =9 \mathrm{~cm}, & \mathrm{FD}=12 \mathrm{~cm}
\end{aligned}
$$

To find: Perimeter of $\triangle \mathrm{ABC}$
Proof:

$$
\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}
$$

[Given]

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}} \\
\Rightarrow & \frac{4}{6}=\frac{\mathrm{AC}}{12}=\frac{\mathrm{BC}}{9} \\
\Rightarrow & \mathrm{AC}=\frac{4}{6} \times 12=8 \mathrm{~cm} \\
\text { and } & \mathrm{BC}=\frac{4}{6} \times 9=6 \mathrm{~cm}
\end{array}
$$

\therefore The perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$

$$
=4 \mathrm{~cm}+6 \mathrm{~cm}+8 \mathrm{~cm}=18 \mathrm{~cm}
$$

Q8. In the given figure, if $\mathrm{DE} \| \mathrm{BC}$, then find the ratio of ar ($\triangle \mathrm{ADE}$) and ar (\square DECB).
Sol. Given: In $\triangle \mathrm{ABC}$, in which
DE \| BC
and $\quad \mathrm{DE}=6 \mathrm{~cm}$ and $\mathrm{BC}=12 \mathrm{~cm}$
To find: $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\square \mathrm{DECB})}$
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$,

[Given] 12 cm
[Corresponding angles]
$\left.\therefore \quad \begin{array}{l}\angle 1=\angle 2 \\ \angle 3=\angle 4\end{array}\right\}$
$\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
[By AA similarity critrion]

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADE})}=\left(\frac{\mathrm{BC}}{\mathrm{DE}}\right)^{2}
$$

$[\because$ Ratio of the areas of two similar triangles is equal to the squares of the ratio of their corresponding sides]

$$
\begin{array}{ll}
\Rightarrow & \frac{\operatorname{ar}(\square \mathrm{DECB})+\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ADE})}=\left(\frac{12}{6}\right)^{2} \\
\Rightarrow & \frac{\operatorname{ar}(\square \mathrm{DECB})}{\operatorname{ar}(\triangle \mathrm{ADE})}+\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ADE})}=(2)^{2} \\
\Rightarrow & \frac{\operatorname{ar}(\square \mathrm{DECB})}{\operatorname{ar}(\triangle \mathrm{ADE})}+1=4 \\
\Rightarrow & \frac{\operatorname{ar}(\square \mathrm{DECB})}{\operatorname{ar}(\triangle \mathrm{ADE})}=4-1=3 \\
\Rightarrow & \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar~(\square DECB})}=\frac{1}{3}
\end{array}
$$

Hence, the required ratio is $1: 3$.
Q9. $A B C D$ is a trapezium in which $A B \| D C$ and P, Q are points on $A D$ and $B C$ respectively such that $P Q \| D C$. If $P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm}$ and $Q C=15 \mathrm{~cm}$, find $A D$.
Sol. Given: $A B C D$ is a trapezium in which
$A B \| C D$ and $P Q \| D C$ (See figure)
Also, $\mathrm{PD}=18 \mathrm{~cm}$,
$\mathrm{BQ}=35 \mathrm{~cm}$ and $\mathrm{QC}=15 \mathrm{~cm}$
To find: AD
Proof: In trapezium ABCD,

$$
\begin{array}{ll}
& \text { AB \|CD } \\
\therefore & \text { AQ \|DC } \\
\text { In } \triangle B C D, & A B\|C D\| P Q \tag{I}
\end{array}
$$

CQ \| CD

$$
\therefore \quad \frac{\mathrm{BO}}{\mathrm{OD}}=\frac{\mathrm{BQ}}{\mathrm{QC}}
$$

(II) [By BPT]

Similarly, in $\triangle \mathrm{DAB}$,

$$
\mathrm{PO} \| \mathrm{AB}
$$

[From (I)]

$$
\therefore \quad \frac{\mathrm{BO}}{\mathrm{OD}}=\frac{\mathrm{AP}}{\mathrm{PD}}
$$

(III) $\quad[\mathrm{By} \mathrm{BPT}]$

From (II) and (III)

$$
\begin{array}{ll}
& \frac{\mathrm{AP}}{\mathrm{PD}}=\frac{\mathrm{BQ}}{\mathrm{QC}} \\
\Rightarrow & \frac{\mathrm{AP}}{18}=\frac{35}{15} \\
\Rightarrow \quad & \mathrm{AP}=\frac{35}{15} \times 18=7 \times 6
\end{array}
$$

$\Rightarrow \quad \mathrm{AP}=42 \mathrm{~cm}$
$\therefore \mathrm{AD}=\mathrm{AP}+\mathrm{PD}=42 \mathrm{~cm}+18 \mathrm{~cm}=60 \mathrm{~cm}$
Q10. Corresponding sides of two similar triangles are in the ratio $2: 3$. If the area of the smaller triangle is $48 \mathrm{~cm}^{2}$, then find the area of the larger triangle.
Sol. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, then by area theorem,

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{\mathrm{AB}}{\mathrm{DE}}\right)^{2}
$$

But,

$$
\mathrm{AB}: \mathrm{DE}=2: 3
$$

and $\quad \operatorname{ar}(\triangle \mathrm{ABC})($ smaller $)=48 \mathrm{~cm}^{2}$
$\therefore \quad \frac{48}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{2}{3}\right)^{2}$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{DEF})=\frac{48 \times 9}{4}=108 \mathrm{~cm}^{2}$
Q11. In a $\triangle \mathrm{PQR}, \mathrm{N}$ is the point on PR such that $\mathrm{QN} \perp \mathrm{PR}$. If $\mathrm{PN} \times \mathrm{NR}=\mathrm{QN}^{2}$, then prove that $\angle \mathrm{PQR}=90^{\circ}$.
Sol. Given: $\triangle \mathrm{PQR}$ in which $\mathrm{QN} \perp \mathrm{PR}$ and $\mathrm{PN} \times \mathrm{NR}=\mathrm{QN}^{2}$.
To Prove: $\angle \mathrm{PQR}=90^{\circ}$
Proof: In $\triangle \mathrm{QNP}$ and $\triangle \mathrm{QNR}$,

$$
\begin{array}{rlrl}
\therefore & \angle 1 & =\angle 2=90^{\circ} \\
& & \mathrm{QN}^{2} & =\mathrm{NR} \times \mathrm{NP} \\
\Rightarrow & \frac{\mathrm{QN}}{\mathrm{NR}} & =\frac{\mathrm{NP}}{\mathrm{QN}} \quad \text { or } \quad & \text { [Given] } \\
& \therefore \mathrm{NP} & =\frac{\mathrm{NR}}{\mathrm{QN}} \\
\triangle \mathrm{PNQ} & \sim \Delta \mathrm{QNR} \\
& {[B y \mathrm{SAS} \text { similarity criterion] }} \\
\angle \mathrm{P} & =\angle \mathrm{RQN}=x \\
\angle 1 & =\angle 2=90^{\circ} \\
\angle \mathrm{PQN} & =\angle \mathrm{R}=y \tag{II}
\end{array}
$$

In $\triangle \mathrm{PQR}$, we have

$$
\angle \mathrm{P}+\angle \mathrm{PQR}+\angle \mathrm{R}=180^{\circ} \quad \text { [Angle sum property of a triangle] }
$$

$\Rightarrow \quad x+x+y+y=180^{\circ} \quad$ [Using (I) and (II)]
$\Rightarrow \quad 2 x+2 y=180^{\circ}$
$\Rightarrow \quad x+y=90^{\circ}$
$\Rightarrow \quad \angle \mathrm{PQR}=90^{\circ}$
Hence, proved.
Q12. Areas of two similar triangles are $36 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$. If the length of a side of the larger triangle is 20 cm , find the length of the corresponding side of the similar triangle.
Sol. Here, $\operatorname{ar}(\triangle \mathrm{ABC})=36 \mathrm{~cm}^{2}$, $\operatorname{ar}(\triangle \mathrm{DEF})=100 \mathrm{~cm}^{2}, \mathrm{DE}=20 \mathrm{~cm}, \mathrm{AB}=$?

If $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$, then by area theorem $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{\mathrm{AB}}{\mathrm{DE}}\right)^{2}$
$\Rightarrow \quad \frac{36}{100}=\left(\frac{\mathrm{AB}}{\mathrm{DE}}\right)^{2}$
$\Rightarrow \quad \frac{6}{10}=\left(\frac{\mathrm{AB}}{\mathrm{DE}}\right)$
[Taking square root]
or

$$
\frac{6}{10}=\frac{\mathrm{AB}}{20} \Rightarrow \mathrm{AB}=\frac{6 \times 20}{10}=12 \mathrm{~cm}
$$

$\therefore \mathrm{AB}=12 \mathrm{~cm}$. Hence, side of smaller Δ is 12 cm .
Q13. In the given figure, if $\angle A C B=\angle C D A, A C=8 \mathrm{~cm}$, $\mathrm{AD}=3 \mathrm{~cm}$, then find BD .
Sol. In $\triangle A C D$ and $\triangle A C B$, we have $\angle \mathrm{CDA}=\angle \mathrm{ACB}$ [Given] $\angle \mathrm{A}=\angle \mathrm{A}$ [Common]
$\therefore \quad \triangle \mathrm{ACD} \sim \triangle \mathrm{ACB}$

[By AA similarity criterion]

So,

$$
\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{DC}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{AC}} \Rightarrow \frac{8}{\mathrm{AB}}=\frac{\mathrm{DC}}{\mathrm{BC}}=\frac{3}{8}
$$

Now,

$$
\frac{8}{\mathrm{AB}}=\frac{3}{8} \Rightarrow \mathrm{AB}=\frac{8 \times 8}{3}=\frac{64}{3}
$$

$$
\begin{aligned}
\mathrm{BD}=\mathrm{AB}-\mathrm{AD} & =\frac{64}{3}-3=\frac{64-9}{3} \\
& =\frac{55}{3} \mathrm{~cm}=18.33 \mathrm{~cm}
\end{aligned}
$$

Hence,
$B D=18.33 \mathrm{~cm}$.
Q14. A 15 m high tower casts a shadow 24 m long at a certain time and at the same time a telephone pole casts a shadow 16 m long. Find the height of the telephone pole.

Sol. Let TW = 15 m be the tower and $\mathrm{SW}=24 \mathrm{~m}$ be its shadow. Also, let PL be the telephone pole and $\mathrm{AL}=16 \mathrm{~m}$ be its shadow.
Let $\mathrm{PL}=x$ metres.

In Δ TWS and \triangle PLA,

$$
\begin{array}{rlrl}
& & \angle \mathrm{W} & =\angle \mathrm{L}=90^{\circ} \\
& & \angle \mathrm{S} & =\angle \mathrm{A} \quad \text { [Each = Angular elevation of sun] } \\
\Rightarrow & & \Delta \mathrm{TWS} & \sim \Delta \mathrm{PLA} \\
\Rightarrow & \frac{\mathrm{TW}}{\mathrm{PL}} & =\frac{\mathrm{TS}}{\mathrm{PA}}=\frac{\mathrm{WS}}{\mathrm{LA}} \\
\Rightarrow & \frac{15}{x} & =\frac{24}{16} \\
\Rightarrow & x & =\frac{15 \times 16}{24}=5 \times 2 \\
\Rightarrow & x & =10 \mathrm{~m}
\end{array}
$$

Hence, the height of the pole is 10 m .
Q15. Foot of a 10 m long ladder leaning against a vertical wall is 6 m away from the base of wall. Find the height of the point on the wall where the top of the ladder reaches.
Sol. As wall $\mathrm{WL}=x \mathrm{~m}$ is vertically up so by Pythagoras theorem,

$$
\begin{array}{rlrl}
& & x^{2} & =10^{2}-6^{2}=100-36 \\
\Rightarrow & & x^{2} & =64 \\
\Rightarrow & & x=8 \mathrm{~m}
\end{array}
$$

EXERCISE 6.4

Q1. In the given figure, if $\angle A=\angle C, A B=6 \mathrm{~cm}$, $\mathrm{BP}=15 \mathrm{~cm}, \mathrm{AP}=12 \mathrm{~cm}$ and $\mathrm{CP}=4 \mathrm{~cm}$, then find the lengths of PD and CD.
Sol. In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{CDP}$,

$$
\begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{C} \quad \text { [Given] } \\
& \angle 1=\angle 2
\end{aligned}
$$

[Vertically opposite angles]
$\therefore \quad \triangle \mathrm{ABP} \sim \Delta \mathrm{CDP} \quad$ [By AA similarity criterion]

$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{CD}}=\frac{\mathrm{AP}}{\mathrm{CP}}=\frac{\mathrm{BP}}{\mathrm{DP}}$
$\Rightarrow \frac{6}{y}=\frac{12}{4}=\frac{15}{x} \quad \Rightarrow \frac{15}{x}=\frac{12}{4}$
$\Rightarrow \frac{6}{y}=\frac{12}{4} \quad \Rightarrow \frac{15}{3}=x$
$\Rightarrow y=\frac{6}{3}=2 \mathrm{~cm} \Rightarrow x=5 \mathrm{~cm}$

$\therefore P D=5 \mathrm{~cm}$ and $\mathrm{DC}=2 \mathrm{~cm}$

Q2. It is given that $\triangle \mathrm{ABC} \sim \Delta \mathrm{EDF}$ such that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}, \mathrm{DF}=15$ cm and $\mathrm{DE}=12 \mathrm{~cm}$. Find the lengths of the remaining sides of the triangles.

Sol.

$$
\triangle \mathrm{ABC} \sim \Delta \mathrm{EDF}
$$

[Given]

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{AB}}{\mathrm{ED}}
\end{array}=\frac{\mathrm{AC}}{\mathrm{EF}}=\frac{\mathrm{BC}}{\mathrm{DF}}, ~\left(\frac{5}{12}=\frac{7}{y}=\frac{x}{15}, ~\left(\frac{5}{12}=\frac{7}{y} .\right.\right.
$$

Hence, the length of $\mathrm{BC}=6.25 \mathrm{~cm}$ and $\mathrm{EF}=16.8 \mathrm{~cm}$.
Q3. Prove that, if a line is drawn parallel to one side of a triangle to intersect the other two sides, then the two sides are divided in the same ratio.
Sol. Given: In $\triangle \mathrm{ABC}$,
DE \| BC
To Prove:

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}
$$

Construction: Draw $\mathrm{EF} \perp \mathrm{AB}$ and $\mathrm{DG} \perp \mathrm{AC}$.
 Join DC and BE.
Proof: $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{DBE})}=\frac{\frac{1}{2} \mathrm{AD} \times \mathrm{EF}}{\frac{1}{2} \mathrm{DB} \times \mathrm{EF}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
and

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle \mathrm{AED})}{\operatorname{ar}(\triangle \mathrm{ECD})}=\frac{\frac{1}{2} \mathrm{AE} \times \mathrm{DG}}{\frac{1}{2} \mathrm{EC} \times \mathrm{DG}}=\frac{\mathrm{AE}}{\mathrm{EC}} \tag{II}
\end{equation*}
$$

Note that \triangle DBE and $\triangle E C D$ are on same base $D E$ and between same parallel lines DE and BC.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{DBE})=\operatorname{ar}(\triangle \mathrm{ECD}) \tag{III}
\end{equation*}
$$

From equations (II) and (III), we have

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle \mathrm{AED})}{\operatorname{ar}(\triangle \mathrm{DBE})}=\frac{\mathrm{AE}}{\mathrm{EC}} \tag{IV}
\end{equation*}
$$

From equations (I) and (IV), we have

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}
$$

Hence, proved.
Q4. In the given figure, if PQRS is a parallelogram and $A B \| P S$, then prove that OC II SR.
Sol. Given: In $\triangle A B C, O$ is any point in the interior of $\triangle \mathrm{ABC}$. OA, OB, OC are joined. PQRS is a parallelogram such that P, Q, R and S lies on segments $O A, A C, B C$ and $O B$ and $P S \| A B$.

To Prove:

OC II SR

Proof: In $\triangle \mathrm{OAB}$ and $\triangle \mathrm{OPS}$

$$
\left.\right\} \quad \text { [Corresponding angles] }
$$

PQRS is a parallelogram so $P S \| Q R$.
$\Rightarrow \quad$ QR \| AB
(III) [From (I), (II]

In $\triangle C Q R$ and $\Delta C A B$,
QR \| AB
$\left.\begin{array}{lrl}\therefore & \angle \mathrm{CAB}=\angle 5 \\ & \angle \mathrm{CBA}=\angle 6\end{array}\right\} \quad \begin{aligned} & \\ & \therefore \triangle \mathrm{CQR} \sim \triangle C A B\end{aligned} \quad$ [By AA similarity criterion]
$\therefore \quad P S \| Q R$
$\therefore \quad \frac{\mathrm{PS}}{\mathrm{AB}}=\frac{\mathrm{CR}}{\mathrm{CB}}=\frac{\mathrm{CQ}}{\mathrm{CA}}$
$\Rightarrow \quad \frac{\mathrm{CR}}{\mathrm{CB}}=\frac{\mathrm{OS}}{\mathrm{OB}}$
[From (I) and (IV)]
These are the ratios of two sides of $\triangle \mathrm{BOC}$ and are equal so by converse of BPT, SR IIOC.
Hence, proved.

Q5. A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.
Sol. In figure ELW is a wall. DL and RE are two positions of ladder of length 5 cm .
Case I: In right angled $\triangle \mathrm{LWD}$,

$$
\begin{array}{rlrl}
& & \mathrm{DW}^{2} & =\mathrm{DL}^{2}-\mathrm{LW}^{2} \\
\Rightarrow & & \mathrm{DW}^{2} & =5^{2}-4^{2} \\
& =25-16=9 \\
\Rightarrow & & \mathrm{DW} & =3 \mathrm{~m} \\
\text { Case II: } & & \mathrm{RW} & =\mathrm{DW}-\mathrm{DR} \\
& & =3-1.6=1.4 \mathrm{~m}
\end{array}
$$

In right angled triangle RWE,

$$
\begin{aligned}
\mathrm{EW}^{2} & =\mathrm{RE}^{2}-\mathrm{RW}^{2} \\
& =5^{2}-1.4^{2}=25-1.96 \\
& =23.04 \\
\mathrm{EW} & =\sqrt{23.04}=4.8 \mathrm{~m} .
\end{aligned}
$$

\therefore The distance by which the ladder shifted upward $=E L=4.8 \mathrm{~m}-4 \mathrm{~m}$ $=0.8 \mathrm{~m}$
Hence, the ladder would slide upward on wall by 0.8 m .
Q6. For going to a city B from city A, there is route via city C, such that $\mathrm{AC} \perp \mathrm{CB}, \mathrm{AC}=2 x \mathrm{~km}$, and $\mathrm{CB}=2(x+7) \mathrm{km}$. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A, after the construction of the highway.
Sol. Distance saved by direct highway $=(A C+B C)-A B$
$\because A C \perp B C$ so by Pythagoras theorem

$$
\begin{array}{rr}
& \mathrm{AC}^{2}+\mathrm{BC}^{2}=\mathrm{AB}^{2} \\
\Rightarrow & (2 x)^{2}+[2(x+7)]^{2}=26^{2} \\
\Rightarrow & 2^{2} x^{2}+2^{2}(x+7)^{2}=676 \\
\Rightarrow & 4 x^{2}+4\left(x^{2}+49+14 x\right)=676 \\
\Rightarrow & 4\left[x^{2}+x^{2}+49+14 x\right]=676 \\
\Rightarrow & 2 x^{2}+14 x+49=\frac{676}{4} \\
\Rightarrow & 2 x^{2}+14 x+49=169 \\
\Rightarrow & 2 x^{2}+14 x+49-169=0 \\
\Rightarrow & 2 x^{2}+14 x-120=0 \\
\Rightarrow & x^{2}+7 x-60=0 \\
\Rightarrow & x^{2}+12 x-5 x-60=0 \\
\Rightarrow & x(x+12)-5(x+12)=0
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad(x+12)(x-5)=0 \\
& \Rightarrow \quad x+12=0 \quad \text { or } \quad x-5=0 \\
& \Rightarrow \quad x=-12 \text { or } x=5 \\
& \text { (rejected) } \\
& \therefore \quad \text { The required distance }=\mathrm{AC}+\mathrm{BC}-\mathrm{AB} \\
& =2 x+2 x+14-26 \\
& =4 x-12 \\
& =4 \times 5-12=20-12 \\
& =8 \mathrm{~km} \\
& {[\because x=5]}
\end{aligned}
$$

Hence, the distance saved by highway is 8 km .
Q7. A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.
Sol. Pole PL $=18 \mathrm{~m}$ casts shadow $\mathrm{LS}=9.6 \mathrm{~m}$
The required distance between top of pole and far end of shadow is equal to PS as pole is vertical so $\angle \mathrm{L}=90^{\circ}$.
\therefore By Pythagoras theorem,

$$
\begin{array}{rlrl}
& & \mathrm{PS}^{2} & =18^{2}+9.6^{2} \\
\Rightarrow & \mathrm{PS}^{2} & =324+92.16=416.16 \\
\Rightarrow & & \mathrm{PS} & =\sqrt{416.16} \\
\Rightarrow & & \mathrm{PS} & =20.4 \mathrm{~m}
\end{array}
$$

Hence, the required distance $=20.4 \mathrm{~m}$

Q8. A street light bulb is fixed on a pole 6 m above the level of the street. If a woman of height 1.5 m casts a shadow of 3 m , then find how far she is away from the base of the pole.
Sol. In \triangle LPS and \triangle NWS,
Bulb L is fixed at a height of 6 m above the road SP.
Woman and pole are vertical.

$$
\begin{aligned}
& \therefore \quad \angle 1=\angle 2=90^{\circ} \\
& \angle \mathrm{S}=\angle \mathrm{S} \\
& \therefore \quad \Delta \mathrm{LPS} \sim \Delta \mathrm{NWS} \\
& \Rightarrow \quad \frac{\mathrm{LP}}{\mathrm{NW}}=\frac{\mathrm{LS}}{\mathrm{NS}}=\frac{\mathrm{PS}}{\mathrm{WS}} \\
& \Rightarrow \quad \frac{6 \mathrm{~m}}{1.5 \mathrm{~m}}=\frac{\mathrm{LS}}{\mathrm{NS}} \quad \frac{}{3} \\
& \Rightarrow \quad \frac{6}{1.5}=\frac{3+x}{3} \\
& \Rightarrow \quad 4.5+1.5 x=18 \\
& \Rightarrow \quad 1.5 x=18-4.5 \\
& \Rightarrow \quad x=\frac{13.5}{1.5}=9 \mathrm{~m}
\end{aligned}
$$

Hence, the woman is 9 m away from the pole.

Q9. In the given figure, $A B C$, is a triangle right angled at B and $\mathrm{BD} \perp \mathrm{AC}$. If $A D=4 \mathrm{~cm}$, and $C D=5 \mathrm{~cm}$ then find $B D$ and $A B$.
Sol. In $\triangle \mathrm{ABC}$,

$$
\begin{array}{lrl}
& \angle \mathrm{ABC}=90^{\circ} & \text { [Given] } \\
& \mathrm{BD} \perp \mathrm{AC} & {[\text { Hypotenuse }]} \\
\therefore & & \mathrm{BD}^{2}=\mathrm{DA} \times \mathrm{DC} \\
\Rightarrow & & \mathrm{BD}^{2}=4 \times 5 \\
\Rightarrow & & \mathrm{BD}=2 \sqrt{5} \mathrm{~cm}
\end{array}
$$

In right angled $\triangle \mathrm{BDA}$,

$$
\mathrm{BD} \perp \mathrm{AC}
$$

$$
\begin{aligned}
\therefore & \angle \mathrm{BDA} & =90^{\circ} \\
\Rightarrow & \mathrm{AB}^{2} & =\mathrm{AD}^{2}+\mathrm{BD}^{2} \\
& & =4^{2}+(2 \sqrt{5})^{2} \\
& & =16+20=36
\end{aligned}
$$

$$
\Rightarrow \quad \mathrm{AB}=6 \mathrm{~cm}
$$

Q10. In the given figure, $P Q R$ is a right triangle right angled at Q and $\mathrm{QS} \perp \mathrm{PR}$. If $\mathrm{PQ}=6 \mathrm{~cm}$ and $\mathrm{PS}=4 \mathrm{~cm}$, then find QS, RS and QR.
Sol. In $\triangle \mathrm{PQR}$,

$$
\angle \mathrm{PQR}=90^{\circ}
$$

$$
\mathrm{QS} \perp \mathrm{PR}
$$

[From vertex Q to hypotenuse PR]

$$
\therefore \quad \mathrm{QS}^{2}=\mathrm{PS} \times \mathrm{SR}
$$

[By theorem]

Now, in $\triangle \mathrm{PSQ}$, we have

$$
\begin{array}{rlrl}
\mathrm{QS}^{2} & =\mathrm{PQ}^{2}-\mathrm{PS}^{2} \\
& & & 6^{2}-4^{2} \\
& =36-16 \\
\Rightarrow & & \mathrm{QS}^{2} & =20 \\
\Rightarrow & \mathrm{QS} & =2 \sqrt{5} \\
\Rightarrow & & \mathrm{QS}^{2} & =\mathrm{PS} \times \mathrm{SR} \tag{I}\\
\Rightarrow & (2 \sqrt{5})^{2} & =4 \times \mathrm{SR} \\
\Rightarrow & \frac{20}{4} & =\mathrm{SR} \\
\Rightarrow & \mathrm{SR} & =5 \mathrm{~cm} \\
\text { Now, } & & \mathrm{QS} & \perp \mathrm{PR} \\
\therefore & \angle \mathrm{QSR} & =90^{\circ}
\end{array}
$$

$$
\begin{array}{rlrl}
\Rightarrow & & \mathrm{QR}^{2} & =\mathrm{QS}^{2}+\mathrm{SR}^{2} \\
& =(2 \sqrt{5})^{2}+5^{2} & \text { [By Pythagoras theorem] } \\
& =20+25 \\
\Rightarrow & \mathrm{QR}^{2} & =45 \\
\Rightarrow & \mathrm{QR} & =3 \sqrt{5} \mathrm{~cm} &
\end{array}
$$

Hence, $\mathrm{QS}=2 \sqrt{5}, \quad \mathrm{RS}=5 \mathrm{~cm}$ and $\mathrm{QR}=3 \sqrt{5} \mathrm{~cm}$.
Q11. In $\triangle P Q R, P D \perp Q R$ such that D lies on QR , if $\mathrm{PQ}=a, \mathrm{PR}=b, \mathrm{QD}=c$ and $\mathrm{DR}=d$, then prove that $(a+b)(a-b)=(c+d)(c-d)$
Sol. Given: In $\triangle \mathrm{PQR}, \mathrm{PD} \perp \mathrm{QR}$ so $\angle 1=\angle 2$.
$\mathrm{PQ}=a, \mathrm{PR}=b, \mathrm{QD}=c$ and $\mathrm{DR}=d$.
To Prove: $(a+b)(a-b)=(c+d)(c-d)$
Proof: In right angle $\triangle \mathrm{PDQ}$,

$$
\mathrm{PD}^{2}=\mathrm{PQ}^{2}-\mathrm{QD}^{2}
$$

[By Pythagoras theorem]

$$
\begin{equation*}
\Rightarrow \quad \mathrm{PD}^{2}=a^{2}-c^{2} \tag{I}
\end{equation*}
$$

Similarly, in right angled $\triangle \mathrm{PDR}$,

$$
\Rightarrow \quad \mathrm{PD}^{2}=\mathrm{PR}^{2}-\mathrm{DR}^{2}{ }^{2} \quad \mathrm{PD}^{2}=b^{2}-d^{2}-1 .
$$

From (I) and (II), we have

$$
\begin{array}{rlrl}
& & a^{2}-c^{2} & =b^{2}-d^{2} \\
\Rightarrow & a^{2}-b^{2} & =c^{2}-d^{2} \\
\Rightarrow & & (a-b)(a+b) & =(c-d)(c+d)
\end{array}
$$

Hence, proved.
Q12. In a quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=90^{\circ}$. Prove that $\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
[Hint: Produce AB and DC to meet at E.]
Sol. Given: A quadrilateral ABCD in which $\angle \mathrm{A}+\angle \mathrm{D}=90^{\circ}$.
To Prove: $\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
Construction: Join AC and BD.
Produce AB and DC to meet at E .

Proof: In $\triangle \mathrm{ADE}$,

$$
\begin{aligned}
& \angle \mathrm{BAD}+\angle \mathrm{CDA} & =90^{\circ} \\
\therefore & \angle \mathrm{E} & =90^{\circ}
\end{aligned}
$$

By Pythagoras theorem in $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCE}$,

$$
\begin{align*}
\mathrm{AD}^{2} & =\mathrm{AE}^{2}+\mathrm{DE}^{2} \tag{I}\\
\mathrm{BC}^{2} & =\mathrm{BE}^{2}+\mathrm{EC}^{2} \tag{II}
\end{align*}
$$

Adding (I) and (II), we get

$$
\begin{equation*}
\mathrm{AD}^{2}+\mathrm{BC}^{2}=\mathrm{AE}^{2}+\mathrm{EC}^{2}+\mathrm{DE}^{2}+\mathrm{BE}^{2} \tag{III}
\end{equation*}
$$

By Pythagoras theorem in $\triangle E C A$ and $\triangle E B D$,

$$
\begin{align*}
& \mathrm{AC}^{2}=\mathrm{AE}^{2}+\mathrm{CE}^{2} \tag{IV}\\
& \mathrm{BD}^{2}=\mathrm{BE}^{2}+\mathrm{DE}^{2} \tag{V}
\end{align*}
$$

$\Rightarrow \quad \mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2}+\mathrm{CE}^{2}+\mathrm{DE}^{2} \quad$ (VI)[Adding (IV) and (V)]
$\Rightarrow \quad A C^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
Hence, proved.
Q13. In the given figure, $l \| m$ and line segments $A B, C D$, and EF are concurrent at point P.
Prove that: $\frac{A E}{B F}=\frac{A C}{B D}=\frac{C E}{F D}$

Sol. Given: $l \| m$
Line segments AB, CD and EF intersect at P.
Points A, E and C are on line l.
Points D, F and B are on line m.
To Prove: $\frac{A E}{B F}=\frac{A C}{B D}=\frac{C E}{F D}$
Proof: In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{BFP}$,

$$
\left.\begin{array}{rl}
l \| m \\
\angle 1 & =\angle 2 \\
\angle 3 & =\angle 4
\end{array}\right\}
$$

[Given]

[Alternate interior angles]
[Same reason]
[By AA similarity criterion]

In $\triangle \mathrm{CEP}$ and $\triangle \mathrm{DFP}$,

$$
\left.\begin{array}{rl}
l & l \| m \\
\angle 7 & =\angle 8 \\
\angle 5 & =\angle 6
\end{array}\right\}
$$

[Alternate interior angles]
[By AA similarity criterion]
$\Rightarrow \quad \frac{\mathrm{CE}}{\mathrm{DF}}=\frac{\mathrm{CP}}{\mathrm{DP}}=\frac{\mathrm{EP}}{\mathrm{FP}}$
In $\triangle \mathrm{ACP}$ and $\triangle \mathrm{BDP}$,

\[

\]

[Given]
[Alternate interior angles]
[By AA similarity criterion]

Hence, proved.
Q14. In the given figure, PA, QB, RC, and SD are all perpendiculars to line ' l ', $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$, $C D=12 \mathrm{~cm}$ and $\mathrm{SP}=36 \mathrm{~cm}$. Find PQ , QR and RS.
Sol. Given: PA, QB, RC and SD are
 perpendiculars on line l.
$A B=6 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}, C D=12 \mathrm{~cm}$

To find: $P Q, Q R$ and $R S$
Construction: Produce SP and l to meet each other at E.
Proof: In \triangle EDS,

$$
\mathrm{AP}\|\mathrm{BQ}\| \mathrm{DS} \| \mathrm{CR}
$$

[Given]
$\therefore \quad \mathrm{PQ}: \mathrm{QR}: \mathrm{RS}=\mathrm{AB}: \mathrm{BC}: \mathrm{CD}$
PQ: QR : RS = 6: $9: 12$
Let $\mathrm{PQ}=6 x$
then $\mathrm{QR}=9 x$
and $\mathrm{RS}=12 x$
\therefore
$\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}=36 \mathrm{~cm}$
$\Rightarrow \quad 6 x+9 x+12 x=36$

$$
\begin{array}{rlrl}
\Rightarrow & 27 x & =36 \\
\Rightarrow & x & =\frac{36}{27}=\frac{4}{3} \\
\therefore & \mathrm{PQ} & =6 \times \frac{4}{3}=8 \mathrm{~cm} \\
\mathrm{QR} & =9 \times \frac{4}{3}=12 \mathrm{~cm} \\
& \mathrm{RS} & =12 \times \frac{4}{3}=16 \mathrm{~cm}
\end{array}
$$

Q15. ' O ' is the point of intersection of the diagonals AC and BD of a trapezium ABCD with $\mathrm{AB} \| \mathrm{CD}$. Through ' O^{\prime} ', a line PQ is drawn parallel to AB meeting AD in P and BC in Q . Prove that $\mathrm{PO}=\mathrm{QO}$.
Sol. Given: In trapezium $A B C D, A B \| D C$.
Diagonals BD and AC intersect at O and POQ \| DC \|AB
To Prove: $\quad \mathrm{PO}=\mathrm{QO}$
Proof: In $\triangle \mathrm{ABD}$,

$$
\begin{array}{rlrl}
& \mathrm{PO} \| \mathrm{AB} & \text { [Given] } \\
\therefore & \frac{\mathrm{AP}}{\mathrm{PD}}=\frac{\mathrm{BO}}{\mathrm{OD}} \tag{I}
\end{array}
$$

Similarly, in $\triangle \mathrm{BDC}$,
OQ \| DC
$\therefore \quad \frac{\mathrm{BO}}{\mathrm{OD}}=\frac{\mathrm{BQ}}{\mathrm{QC}}$

(II)

From (I) and (II), we have

$$
\begin{align*}
\frac{\mathrm{AP}}{\mathrm{PD}} & =\frac{\mathrm{BQ}}{\mathrm{QC}} \\
\Rightarrow \quad \frac{\mathrm{AP}}{\mathrm{PD}}+1 & =\frac{\mathrm{BQ}}{\mathrm{QC}}+1 \\
\Rightarrow \quad \frac{\mathrm{AP}+\mathrm{PD}}{\mathrm{PD}} & =\frac{\mathrm{BQ}+\mathrm{QC}}{\mathrm{QC}} \\
\Rightarrow \quad & \quad \text { [Adding 1 on both sides] } \tag{III}\\
\Rightarrow \quad & =\frac{\mathrm{BC}}{\mathrm{QC}} \quad \text { or } \quad \frac{\mathrm{PD}}{\mathrm{AD}}=\frac{\mathrm{QC}}{\mathrm{BC}}
\end{align*}
$$

In $\triangle \mathrm{DOP}$ and $\triangle \mathrm{DBA}$,
AB \| PO

$$
\therefore \quad \angle \mathrm{DPO}=\angle \mathrm{DAB}
$$

[Given]
$\left.\begin{array}{ll}\therefore & \angle \mathrm{DPO}=\angle \mathrm{DAB} \\ & \therefore \\ \angle \mathrm{DOP}=\angle \mathrm{DBA}\end{array}\right\}$

$$
\angle \mathrm{DOP}=\angle \mathrm{DBA}
$$

$\therefore \quad \triangle \mathrm{DOP} \sim \triangle \mathrm{DBA}$
[By AA similarity criterion]

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{PO}}{\mathrm{AB}}=\frac{\mathrm{DP}}{\mathrm{DA}} \tag{IV}
\end{equation*}
$$

Similarly, $\triangle C O Q \sim \triangle C A B$
[By AA similarity criterion]

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{OQ}}{\mathrm{AB}}=\frac{\mathrm{QC}}{\mathrm{BC}} \tag{V}
\end{equation*}
$$

From (III), (IV) and (V), we have

$$
\begin{aligned}
& & \frac{\mathrm{PO}}{\mathrm{AB}} & =\frac{\mathrm{OQ}}{\mathrm{AB}} \\
\Rightarrow & & \mathrm{PO} & =\mathrm{OQ}
\end{aligned}
$$

Hence, proved.
Q16. In the given figure, the line segment DF intersect the side $A C$ of $\triangle A B C$ at the point E such that E is mid point of $A C$ and $\angle \mathrm{AFE}=\angle \mathrm{AEF}$.
Prove that: $\quad \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}}$.
[Hint: Take point G on AB such that CG \| I DF.]
Sol. In the given figure of $\triangle \mathrm{ABC}$,

$$
\mathrm{EA}=\mathrm{AF}=\mathrm{EC}
$$

EF and BC meets at D .
To Prove: $\quad \frac{B D}{C D}=\frac{B F}{C E}$
Construction: Draw CG II EF.
Proof: In $\triangle \mathrm{ACG}, \mathrm{CG} \| \mathrm{EF}$.
$\because E$ is mid-point of $A C$
\therefore F will be the mid point of AG.
\Rightarrow
FG = FA
But,
$\mathrm{EC}=\mathrm{EA}=\mathrm{AF} \quad$ [Given]
$\therefore \quad \mathrm{FG}=\mathrm{FA}=\mathrm{EA}=\mathrm{EC}$

In $\triangle \mathrm{BCG}$ and BDF ,

$$
\begin{array}{lll}
& \mathrm{CG} \| \mathrm{EF} & \text { [By construction] } \tag{I}\\
\therefore & \frac{\mathrm{BC}}{\mathrm{CD}}=\frac{\mathrm{BG}}{\mathrm{GF}}
\end{array}
$$

$\Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{CD}}+1=\frac{\mathrm{BG}}{\mathrm{GF}}+1 \Rightarrow \frac{\mathrm{BC}+\mathrm{CD}}{\mathrm{CD}}=\frac{\mathrm{BG}+\mathrm{GF}}{\mathrm{GF}}$
$\Rightarrow \quad \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{GF}}$
But, $F G=C E$
[From (I)]
$\Rightarrow \quad \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}}$
Hence, proved.
Q17. Prove that the area of the semi-circle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of semi-circles drawn on the other two sides of the triangle.

Sol. Given: In figure, $\triangle \mathrm{ABC}$ is right angled at B . Three semi-circles taking as the sides BC, AB and $A C$ of triangle $A B C$ as diameter C_{1}, C_{2} and C_{3} are drawn.
To Prove: Area of semicircles $\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)=$ Area of semi-circle C_{3}
Proof: In $\triangle \mathrm{ABC}$,

$$
\begin{array}{rlrl}
\angle \mathrm{B} & =90^{\circ} \\
\therefore & & \mathrm{BC}^{2}+\mathrm{AB}^{2} & =\mathrm{AC}^{2} \\
\Rightarrow & & \left(2 r_{1}\right)^{2}+\left(2 r_{2}\right)^{2} & =\left(2 r_{3}\right)^{2} \\
& & & {[\text { From figure as } \mathrm{BC},} \\
\Rightarrow & 4\left(r_{1}^{2}+r_{2}^{2}\right) & =4 r_{3}^{2} \Rightarrow r_{1}^{2}+r_{2}^{2}=r_{3}^{2} \\
\Rightarrow & \frac{1}{2} \pi r_{1}^{2}+\frac{1}{2} \pi r_{2}^{2} & = & \frac{1}{2} \pi r_{3}^{2}
\end{array}
$$

$$
\text { [From figure as } \mathrm{BC}, \mathrm{AB} \text { and } \mathrm{AC} \text { are diameters] }
$$

$\operatorname{ar}\left(\right.$ semi-circle $\left.C_{1}\right)+\operatorname{ar}\left(\right.$ semi-circle $\left.C_{2}\right)=\operatorname{ar}\left(\right.$ semi-circle $\left.C_{3}\right)$
Hence, proved.
Q18. Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.
Sol. Given: A right triangle ABC .
Let $\mathrm{AB}=a, \mathrm{BC}=b, \mathrm{AC}=c$ and $\mathrm{B}=\angle 90^{\circ}$.
Equilateral triangles with sides $\mathrm{AB}=a, \mathrm{BC}$ $=b$ and $\mathrm{AC}=c$ are drawn respectively.
To Prove: Area of equilateral triangle with side hypotenuse (c) is equal to the area of equilateral triangles with side a and b.
or $\frac{\sqrt{3}}{4} c^{2}=\frac{\sqrt{3}}{4} a^{2}+\frac{\sqrt{3}}{4} b^{2}$

Proof: In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& & \angle \mathrm{ABC} & =90^{\circ} \\
& \therefore & \mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& \Rightarrow & c^{2} & =a^{2}+b^{2}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{\sqrt{3}}{4} c^{2}=\frac{\sqrt{3}}{4} a^{2}+\frac{\sqrt{3}}{4} b^{2} \quad\left[\text { Multiplying by } \frac{\sqrt{3}}{4}\right. \text { to both sides] }
$$

$$
\Rightarrow\binom{\text { Area of equilateral }}{\Delta \text { with side } c}=\binom{\text { Area of equilateral }}{\Delta \text { with side } a}+\binom{\text { Area of equilateral }}{\Delta \text { with side } b}
$$

Hence, the area of equilateral Δ with hypotenuse is equal to the sum of areas of equilateral triangles on other two sides.
Hence, proved.

