NCERT Solutions for Class 11 Maths Chapter 15

Statistics Class 11

Chapter 15 Statistics Exercise 15.1, 15.2, 15.3, miscellaneous Solutions

Exercise 15.1 : Solutions of Questions on Page Number : 360
Q1 :

Find the mean deviation about the mean for the data
$4,7,8,9,10,12,13,17$

Answer :

The given data is
$4,7,8,9,10,12,13,17$
Mean of the data, $\bar{x}=\frac{4+7+8+9+10+12+13+17}{8}=\frac{80}{8}=10$
The deviations of the respective observations from the mean \bar{x}, i.e. $x_{i}-\bar{x}$, are

The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$, are
$6,3,2,1,0,2,3,7$
The required mean deviation about the mean is
M.D. $(\bar{x})=\frac{\sum_{i=1}^{8}\left|x_{i}-\bar{x}\right|}{8}=\frac{6+3+2+1+0+2+3+7}{8}=\frac{24}{8}=3$

Q2 :

Find the mean deviation about the mean for the data
$38,70,48,40,42,55,63,46,54,44$

Answer :

The given data is
$38,70,48,40,42,55,63,46,54,44$
Mean of the given data,
$\bar{x}=\frac{38+70+48+40+42+55+63+46+54+44}{10}=\frac{500}{10}=50$
The deviations of the respective observations from the mean \bar{x}, i.e. $x_{i}-\bar{x}$, are
â€" 12,20 , â€" 2 , â€" 10 , âє" $8,5,13$, â€" 4,4 , â€" 6
The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$, are
12, 20, 2, 10, 8, 5, 13, 4, 4, 6
The required mean deviation about the mean is

$$
\begin{aligned}
\text { M.D. }(\bar{x}) & =\frac{\sum_{i=1}^{10}\left|x_{i}-\bar{x}\right|}{10} \\
& =\frac{12+20+2+10+8+5+13+4+4+6}{10} \\
& =\frac{84}{10} \\
& =8.4
\end{aligned}
$$

Q3 :

Find the mean deviation about the median for the data.
$13,17,16,14,11,13,10,16,11,18,12,17$

Answer :

The given data is
$13,17,16,14,11,13,10,16,11,18,12,17$
Here, the numbers of observations are 12, which is even.
Arranging the data in ascending order, we obtain
$10,11,11,12,13,13,14,16,16,17,17,18$
Median, $\mathrm{M}=\frac{\left(\frac{12}{2}\right)^{t / h} \text { observation }+\left(\frac{12}{2}+1\right)^{t / h} \text { observation }}{2}$

$$
\begin{aligned}
& =\frac{6^{\text {th }} \text { observation }+7^{\text {th }} \text { observation }}{2} \\
& =\frac{13+14}{2}=\frac{27}{2}=13.5
\end{aligned}
$$

The deviations of the respective observations from the median, i.e. $x_{i}-\mathrm{M}$, are
â€"3.5, â€"2.5, â€"2.5, â€"1.5, â€"0.5, â€"0.5, 0.5, 2.5, 2.5, 3.5, 3.5, 4.5
The absolute values of the deviations, $\left|x_{i}-M\right|$, are

$3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$

The required mean deviation about the median is

$$
\begin{aligned}
\text { M.D. }(\mathrm{M}) & =\frac{\sum_{i=1}^{12}\left|x_{i}-\mathrm{M}\right|}{12} \\
& =\frac{3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.5}{12} \\
& =\frac{28}{12}=2.33
\end{aligned}
$$

Q4 :
Find the mean deviation about the median for the data
$36,72,46,42,60,45,53,46,51,49$

Answer :

The given data is
$36,72,46,42,60,45,53,46,51,49$
Here, the number of observations is 10 , which is even.
Arranging the data in ascending order, we obtain
$36,42,45,46,46,49,51,53,60,72$

$$
\text { Median } \begin{aligned}
\mathrm{M} & =\frac{\left(\frac{10}{2}\right)^{t h} \text { observation }+\left(\frac{10}{2}+1\right)^{\text {th }} \text { observation }}{2} \\
& =\frac{5^{\text {th }} \text { observation }+6^{\text {th }} \text { observation }}{2} \\
& =\frac{46+49}{2}=\frac{95}{2}=47.5
\end{aligned}
$$

The deviations of the respective observations from the median, i.e. $x_{i}-\mathrm{M}$, are
â€"11.5, â€" $5.5, \hat{a} € " 2.5, ~ a ̂ € " 1.5, ~ a ̂ € " 1.5, ~ 1.5, ~ 3.5, ~ 5.5, ~ 12.5, ~ 24.5 ~$
The absolute values of the deviations, $\left|x_{i}-\mathrm{M}\right|$, are
$11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$
Thus, the required mean deviation about the median is

$$
\begin{aligned}
\operatorname{M.D} .(\mathrm{M}) & =\frac{\sum_{i=1}^{10}\left|x_{i}-\mathrm{M}\right|}{10}=\frac{11.5+5.5+2.5+1.5+1.5+1.5+3.5+5.5+12.5+24.5}{10} \\
& =\frac{70}{10}=7
\end{aligned}
$$

Q5 :
Find the mean deviation about the mean for the data.

x_{i}	5	10	15	20	25
f_{i}	7	4	6	3	5

Answer :

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathrm{i}}\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6
20	3	60	6	18
25	5	125	11	55
	25	350		158

$\mathrm{N}=\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}=25$
$\sum_{i=1}^{5} f_{i} x_{i}=350$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{25} \times 350=14$
$\therefore \mathrm{MD}(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{25} \times 158=6.32$

Q6 :
Find the mean deviation about the mean for the data

x_{i}	10	30	50	70	90
f_{i}	4	24	28	16	8

Answer :

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathrm{i}}\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$
10	4	40	40	160
30	24	720	20	480
50	28	1400	0	0
70	16	1120	20	320
90	8	720	30	
$\mathrm{~N}=\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}=80, \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=4000$	1280			
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{80} \times 4000=50$				
$\left.\mathrm{MD}(\overline{\mathrm{x}}) \frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \right\rvert\, \mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}=\frac{1}{80} \times 1280=16$				

Q7 :

Find the mean deviation about the median for the data.

\boldsymbol{x}_{i}	5	7	9	10	12	15
$\boldsymbol{f}_{\boldsymbol{i}}$	8	6	2	2	2	6

Answer :

The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{c} . \boldsymbol{f}$.
5	8	8
7	6	14

9	2	16
10	2	18
12	2	20
15	6	26

Here, $N=26$, which is even.
Median is the mean of $13^{\text {th }}$ and $14^{\text {th }}$ observations. Both of these observations lie in the cumulative frequency 14 , for which the corresponding observation is 7 .
\therefore Median $=\frac{13^{\text {th }} \text { observation }+14^{\text {th }} \text { observation }}{2}=\frac{7+7}{2}=7$
The absolute values of the deviations from median, i.e. $\left|x_{i}-\mathrm{M}\right|$, are

$\left\|x_{i} \hat{\boldsymbol{a} \epsilon} \epsilon^{\prime \prime} \mathbf{M}\right\|$	2	0	2	3	5	8
$\boldsymbol{f}_{\boldsymbol{i}}$	8	6	2	2	2	6
$\boldsymbol{f}_{\boldsymbol{i}}\left\|\boldsymbol{x}_{\boldsymbol{i}} \hat{\boldsymbol{a}} \epsilon^{\prime \prime} \mathbf{M}\right\|$	16	0	4	6	10	48

$\sum_{i=1}^{6} f_{i}=26 \sum_{\text {and }} \sum_{i=1}^{6} f_{i}\left|x_{i}-\mathrm{M}\right|=84$
M.D. $(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{6} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{26} \times 84=3.23$

Q8 :
Find the mean deviation about the median for the data

$\boldsymbol{x}_{\boldsymbol{i}}$	15	21	27	30	35
$\boldsymbol{f}_{\boldsymbol{i}}$	3	5	6	7	8

Answer :

The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{c} . f$.
15	3	3
21	5	8

27	6	14
30	7	21
35	8	29

Here, $\mathrm{N}=29$, which is odd.
\therefore Median $=\left(\frac{29+1}{2}\right)^{\text {th }}$
This observation lies in the cumulative frequency 21 , for which the corresponding observation is 30 .
\therefore Median $=30$
The absolute values of the deviations from median, i.e. $\left|x_{i}-\mathrm{M}\right|$, are

$\mid \boldsymbol{x}_{\boldsymbol{i}} \hat{\boldsymbol{a}} \boldsymbol{\epsilon}$ "M\|	15	9	3	0	5
	$\boldsymbol{f}_{\boldsymbol{i}}$	3	5	6	7
$\boldsymbol{f}_{\boldsymbol{i}}\left\|\boldsymbol{x}_{\boldsymbol{i}} \hat{\boldsymbol{a}} \boldsymbol{\epsilon}^{\prime \prime} \mathbf{M}\right\|$	45	45	18	0	40

$$
\begin{aligned}
& \sum_{i=1}^{5} f_{i}=29, \sum_{i=1}^{5} f_{i}\left|x_{i}-\mathrm{M}\right|=148 \\
& \therefore \quad \text { M.D.(M) }=\frac{1}{\mathrm{~N}} \sum_{i=1}^{5} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{29} \times 148=5.1
\end{aligned}
$$

Q9:
Find the mean deviation about the mean for the data.

Income per day	Number of persons
$0-100$	4
$100-200$	8
$200-300$	9
$300-400$	10
$400-500$	7
$500-600$	5
$600-700$	4
$700-800$	3

Answer :
The following table is formed.

Income per day	Number of persons $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point \boldsymbol{x}_{i}	$f_{i} x_{i}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
0 â€" 100	4	50	200	308	1232
100 â€" 200	8	150	1200	208	1664
200 â€" 300	9	250	2250	108	972
300 â€" 400	10	350	3500	8	80
400 â€" 500	7	450	3150	92	644
500 â€" 600	5	550	2750	192	960
600 â€" 700	4	650	2600	292	1168
700 â€" 800	3	750	2250	392	1176
	50		17900		7896
$\text { Here, } N=\sum_{i=1}^{8} f_{i}=50, \sum_{i=1}^{8} f_{i} x_{i}=17900$					
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{g}} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{50} \times 17900=358$					
$\text { M.D. }(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|=\frac{1}{50} \times 7896=157.92$					

Q10 :
Find the mean deviation about the mean for the data

Height in cms	Number of boys
$95-105$	9
$105-115$	13
$115-125$	26
$125-135$	30
$135-145$	12

\square

Answer :

The following table is formed.

Height in cms	Number of boys $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{i}$	$\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathrm{i}}\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$
$95-105$	9	100	900	25.3	227.7
$105-115$	13	110	1430	15.3	198.9
$115-125$	26	120	3120	5.3	137.8
$125-135$	30	130	3900	4.7	141
$135-145$	12	140	1680	14.7	176.4
$145-155$	10	150	1500	24.7	247

Here, $\quad \mathrm{N}=\sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}=100, \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=12530$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{100} \times 12530=125.3$
M.D. $(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{100} \times 1128.8=11.28$

Q11 :
Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age	Number
$16-20$	5
$21-25$	6
$26-30$	12
$31-35$	14
$36-40$	26
$41-45$	12
$46-50$	16

$51-55$

Answer :

The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.

The table is formed as follows.

Age	Number f_{i}	Cumulative frequency (c.f.)	Mid-point x_{i}	\| $x_{i} \hat{a} \epsilon^{\prime \prime}$ Med.	$f_{i} \mid x_{i} \hat{a} \epsilon$ " Med. ${ }^{\text {a }}$
15.5-20.5	5	5	18	20	100
20.5-25.5	6	11	23	15	90
25.5-30.5	12	23	28	10	120
30.5-35.5	14	37	33	5	70
35.5-40.5	26	63	38	0	0
40.5-45.5	12	75	43	5	60
45.5-50.5	16	91	48	10	160
50.5-55.5	9	100	53	15	135
	100				735

The class interval containing the $\frac{\mathrm{N}^{\text {l/t }}}{2}$ or $50^{\text {th }}$ item is 35.5 â $€^{\text {" }} 40.5$.
Therefore, 35.5 â $€^{\prime \prime} 40.5$ is the median class.
It is known that,
Median $=l+\frac{\frac{\mathrm{N}}{2}-\mathrm{C}}{f} \times h$
Here, $I=35.5, \mathrm{C}=37, f=26, h=5$, and $\mathrm{N}=100$
\therefore Median $=35.5+\frac{50-37}{26} \times 5=35.5+\frac{13 \times 5}{26}=35.5+2.5=38$
Thus, mean deviation about the median is given by,
M.D. $(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{8} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{100} \times 735=7.35$

Q1:
Find the mean and variance for the data $6,7,10,12,13,4,8,12$

Answer :

$6,7,10,12,13,4,8,12$
Mean, $\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{8} \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{6+7+10+12+13+4+8+12}{8}=\frac{72}{8}=9$
The following table is obtained.

\boldsymbol{x}_{i}	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
6	â€"3	9
7	â€"2	4
10	â€"1	1
12	3	9
13	4	16
4	â€"5	25
8	â€"1	1
12	3	9
		74

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{8}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{8} \times 74=9.25$

Q2 :
Find the mean and variance for the first n natural numbers

Answer :

The mean of first n natural numbers is calculated as follows.
Mean $=\frac{\text { Sum of all observations }}{\text { Number of observations }}$

$$
\begin{aligned}
\therefore \text { Mean }= & \frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2} \\
\text { Variance }\left(\sigma^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[x_{i}-\left(\frac{n+1}{2}\right)\right]^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n} \sum_{i=1}^{n} 2\left(\frac{n+1}{2}\right) x_{i}+\frac{1}{n} \sum_{i=1}^{n}\left(\frac{n+1}{2}\right)^{2} \\
& =\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}-\left(\frac{n+1}{n}\right)\left[\frac{n(n+1)}{2}\right]+\frac{(n+1)^{2}}{4 n} \times n \\
& =\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{2}+\frac{(n+1)^{2}}{4} \\
& =\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4} \\
& =(n+1)\left[\frac{4 n+2-3 n-3}{12}\right] \\
& =\frac{(n+1)(n-1)}{12} \\
& =\frac{n^{2}-1}{12}
\end{aligned}
$$

Q3 :

Find the mean and variance for the first 10 multiples of 3

Answer :

The first 10 multiples of 3 are
$3,6,9,12,15,18,21,24,27,30$
Here, number of observations, $n=10$
Mean, $\bar{x}=\frac{\sum_{i=1}^{10} x_{i}}{10}=\frac{165}{10}=16.5$
The following table is obtained.

\boldsymbol{x}_{i}	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
3	â€"13.5	182.25
6	â€"10.5	110.25
9	â€"7.5	56.25
12	â€"4.5	20.25
15	â€"1.5	2.25
18	1.5	2.25
21	4.5	20.25
24	7.5	56.25
27	10.5	110.25
30	13.5	182.25
		742.5

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{10} \times 742.5=74.25$

Q4 :
Find the mean and variance for the data

$x i$	6	10	14	18	24	28	30
$f i$	2	4	7	12	8	4	3

Answer :

The data is obtained in tabular form as follows.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f i}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$	$\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
6	2	12	$\hat{\mathrm{a}} \epsilon^{\prime \prime} 13$	169	338
10	4	40	$\hat{\mathrm{a}} €^{\prime \prime} 9$	81	324
14	7	98	$\hat{\mathrm{a}} €^{\prime \prime} 5$	25	175

18	12	216	$\hat{\mathrm{a} €}{ }^{\prime \prime} 1$	1	12
24	8	192	5	25	200
28	4	112	9	81	324
30	3	90	11	121	363
	40	760			1736

Here, $N=40, \sum_{i=1}^{7} f_{i} x_{i}=760$
$\therefore \bar{x}=\frac{\sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\mathrm{N}}=\frac{760}{40}=19$
Variance $=\left(\sigma^{2}\right)=\frac{1}{N} \sum_{i=1}^{7} f_{i}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{40} \times 1736=43.4$

Q5:
Find the mean and variance for the data

$x i$	92	93	97	98	102	104	109
$f i$	3	2	3	2	6	3	3

Answer:

The data is obtained in tabular form as follows.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f} \boldsymbol{i}$	$\boldsymbol{f} \boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$	$\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
92	3	276	$\hat{\mathrm{a} € "} 6$	64	192
93	2	186	$\hat{\mathrm{a} €}{ }^{\prime \prime} 7$	49	98
97	3	291	$\hat{\mathrm{a} €}{ }^{\prime} \times 3$	9	27
98	2	196	$\hat{\mathrm{a} €}{ }^{\prime} \times 2$	4	8
102	6	612	2	4	24
104	3	312	4	16	48

109	3	327	9	81	243
	22	2200			640

Here, $N=22, \sum_{i=1}^{7} f_{i} x_{i}=2200$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{22} \times 2200=100$
Variance $\left(\sigma^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{22} \times 640=29.09$

Q6 :
Find the mean and standard deviation using short-cut method.

x_{i}	60	61	62	63	64	65	66	67	68
f_{i}	2	1	12	29	25	12	10	4	5

Answer :

The data is obtained in tabular form as follows.

\boldsymbol{x}_{i}	f_{i}	$\mathrm{f}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-64}{1}$	$\boldsymbol{y}_{i}{ }^{2}$	$\boldsymbol{f y}_{i}$	$\mathrm{f}_{\boldsymbol{y}}{ }^{2}$
60	2	â€"4	16	âe" 8	32
61	1	â€"3	9	âe"3	9
62	12	â€"2	4	â€" 24	48
63	29	â€"1	1	â€"29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	36
68	5	4	16	20	80
	100	220		0	286

Mean, $\overline{\mathrm{x}}=\mathrm{A} \frac{\sum_{\mathrm{i}=1}^{9} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=64+\frac{0}{100} \times \mathrm{l}=64+0=64$
Variance,$\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{q} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum_{\mathrm{i}=1}^{9} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{1}{100^{2}}[100 \times 286-0] \\
& =2.86
\end{aligned}
$$

$\therefore S$ tan dard deviation $(\sigma)=\sqrt{2.86}=1.69$

Q7:
Find the mean and variance for the following frequency distribution.

Classes	$0-30$	$30-60$	$60-90$	$90-120$	$120-150$	$150-180$	$180-210$
Frequencies	2	3	5	10	3	5	2

Answer :

Class	Frequency \boldsymbol{f}_{i}	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$y_{i}=\frac{x_{i}-105}{30}$	$\boldsymbol{y}_{i}{ }^{\text {a }}$	$f^{\prime} y_{i}$	$\boldsymbol{f} \boldsymbol{y}^{2}$
0-30	2	15	â€"3	9	â€"6	18
30-60	3	45	â€"2	4	â€"6	12
60-90	5	75	â€"1	1	â€"5	5
90-120	10	105	0	0	0	0
120-150	3	135	1	1	3	3
150-180	5	165	2	4	10	20
180-210	2	195	3	9	6	18
	30				2	76

$$
\text { Mean, } \overline{\mathrm{x}}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{~N}} \times \mathrm{h}=105+\frac{2}{30} \times 30=105+2=107
$$

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{7} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{7} f_{i} y_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{(30)^{2}}{(30)^{2}}\left[30 \times 76-(2)^{2}\right] \\
& =2280-4 \\
& =2276
\end{aligned}
$$

Q8:
Find the mean and variance for the following frequency distribution.

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequencies	5	8	15	16	6

Answer :

Class	Frequency f_{i}	Mid-point \boldsymbol{x}_{i}	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-25}{10}$	$\boldsymbol{y}_{i}{ }^{2}$	$\boldsymbol{f l}_{\boldsymbol{y}}$	$\boldsymbol{f} \boldsymbol{y}_{i}{ }^{2}$
0-10	5	5	â€"2	4	â€"10	20
10-20	8	15	â€"1	1	â€"8	8
20-30	15	25	0	0	0	0
30-40	16	35	1	1	16	16
40-50	6	45	2	4	12	24
	50				10	68
$\text { Mean, } \bar{x}=A+\frac{\sum_{i=1}^{5} f_{i} y_{i}}{N} \times h=25+\frac{10}{50} \times 10=25+2=27$						

$$
\begin{aligned}
\operatorname{Variance}\left(\sigma^{2}\right) & =\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{5} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{5} f_{i} y_{i}\right)^{2}\right] \\
& =\frac{(10)^{2}}{(50)^{2}}\left[50 \times 68-(10)^{2}\right] \\
& =\frac{1}{25}[3400-100]=\frac{3300}{25} \\
& =132
\end{aligned}
$$

Q9 :
Find the mean, variance and standard deviation using short-cut method

Height in cms	No. of children $70-75$
$75-80$	3
$80-85$	4
$85-90$	7
$90-95$	7
$95-100$	15
$100-105$	9
$105-110$	6
$110-115$	6

Answer:

Class Interval	Frequency \boldsymbol{f}_{i}	Mid-point \boldsymbol{x}_{i}	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-92.5}{5}$	$\boldsymbol{y}_{\boldsymbol{i}}{ }^{2}$	$\boldsymbol{f l}_{i}$	$\mathrm{f}_{\boldsymbol{y}}{ }^{2}$
70-75	3	72.5	â€"4	16	â€"12	48
75-80	4	77.5	â€"3	9	â€"12	36
80-85	7	82.5	â€"2	4	â€"14	28

$85-90$	7	87.5	$\hat{a} \epsilon^{\prime \prime} 1$	1	$\hat{a} \notin{ }^{\text {" }} 7$	7
$90-95$	15	92.5	0	0	0	0
$95-100$	9	97.5	1	1	9	9
$100-105$	6	102.5	2	4	12	24
$105-110$	6	107.5	3	9	18	54
$110-115$	3	112.5	4	16	12	48
	60			6	254	

Mean, $\bar{x}=A+\frac{\sum_{i=1}^{9} f_{i} y_{i}}{N} \times h=92.5+\frac{6}{60} \times 5=92.5+0.5=93$
$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{9} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{9} f_{i} y_{i}\right)^{2}\right]$
$=\frac{(5)^{2}}{(60)^{2}}\left[60 \times 254-(6)^{2}\right]$
$=\frac{25}{3600}(15204)=105.58$
$\therefore S \tan$ dard deviation $(\sigma)=\sqrt{105.58}=10.27$

Q10 :
The diameters of circles (in mm) drawn in a design are given below:

Diameters	No. of children
$33-36$	15
$37-40$	17
$41-44$	21
$45-48$	22
$49-52$	25

Class Interval	Frequency $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point \boldsymbol{x}_{i}	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-42.5}{4}$	\boldsymbol{f}_{i}	$\boldsymbol{f}_{\boldsymbol{y}} \boldsymbol{y}_{i}$	$\boldsymbol{f}_{\boldsymbol{y}_{i}{ }^{2}}$
$32.5-36.5$	15	34.5	$\hat{\mathrm{a}} €^{\prime \prime} 2$	4	$\hat{\mathrm{a}} \mathrm{e}^{\prime \prime} 30$	60
$36.5-40.5$	17	38.5	$\hat{\mathrm{a}} €^{\prime \prime} 1$	1	$\hat{\mathrm{a}} €^{\prime \prime} 17$	17
$40.5-44.5$	21	42.5	0	0	0	0
$44.5-48.5$	22	46.5	1	1	22	22
$48.5-52.5$	25	50.5	2	4	50	100
	100			25	199	

Here, $\mathrm{N}=100, h=4$
Let the assumed mean, A, be 42.5.
$\underset{\text { Mean, }}{\overline{\mathrm{x}}}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=42.5+\frac{25}{100} \times 4=43.5$
$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{5} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{5} f_{i} y_{i}\right)^{2}\right]$

$$
=\frac{16}{10000}\left[100 \times 199-(25)^{2}\right]
$$

$$
=\frac{16}{10000}[19900-625]
$$

$$
=\frac{16}{10000} \times 19275
$$

$$
=30.84
$$

$\therefore \mathrm{Stan}$ dard deviation $(\sigma)=5.55$

Exercise 15.3 : Solutions of Questions on Page Number : 375
Q1:
From the data given below state which group is more variable, \mathbf{A} or \mathbf{B} ?

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Answer :

Firstly, the standard deviation of group A is calculated as follows.

Marks	Group A \boldsymbol{f}_{i}	Mid-point \boldsymbol{x}_{i}	$y_{i}=\frac{x_{i}-45}{10}$	$\boldsymbol{y}_{i}{ }^{2}$	$\boldsymbol{f l}_{\boldsymbol{y}}$	$\boldsymbol{f}_{\boldsymbol{y}}{ }^{2}$
10-20	9	15	â€"3	9	â€"27	81
20-30	17	25	â€"2	4	â€"34	68
30-40	32	35	â€"1	1	â€"32	32
40-50	33	45	0	0	0	0
50-60	40	55	1	1	40	40
60-70	10	65	2	4	20	40
70-80	9	75	3	9	27	81
	150				â€"6	342

Here, $h=10, N=150, A=45$

$$
\begin{aligned}
& \text { Mean }=\mathrm{A}+\frac{\sum_{i=1}^{7} \mathrm{x}_{\mathrm{i}}}{\mathrm{~N}} \times \mathrm{h}=45+\frac{(-6) \times 10}{150}=45-0.4=44.6 \\
& \begin{aligned}
\sigma_{1}^{2} & =\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left(\mathrm{~N} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\left(\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \\
& =\frac{100}{22500}\left(150 \times 342-(-6)^{2}\right) \\
& =\frac{1}{225}(51264) \\
& =227.84
\end{aligned}
\end{aligned}
$$

\therefore Stan dard deviation $\left(\sigma_{1}\right)=\sqrt{227.84}=15.09$
The standard deviation of group B is calculated as follows.

Marks	Group B	Mid-point \boldsymbol{x}_{i}	$y_{i}=\frac{x_{i}-45}{10}$	$\boldsymbol{y}_{i}{ }^{\text {i }}$	$\boldsymbol{f}_{\boldsymbol{y}}{ }_{\text {i }}$	$\boldsymbol{f}_{\boldsymbol{y}}{ }^{2}$
10-20	10	15	â€"3	9	â€"30	90
20-30	20	25	â€"2	4	â€"40	80
30-40	30	35	â€"1	1	â€"30	30
40-50	25	45	0	0	0	0

$50-60$	43	55	1	1	43	43
$60-70$	15	65	2	4	30	60
$70-80$	7	75	3	9	21	63
	150		$\hat{a} €^{\prime \prime} 6$	366		

Mean $=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=45+\frac{(-6) \times 10}{150}=45-0.4=44.6$

$$
\begin{aligned}
\sigma_{2}^{2} & =\frac{h^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\left(\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right] \\
& =\frac{100}{22500}\left[150 \times 366-(-6)^{2}\right] \\
& =\frac{1}{225}[54864]=243.84
\end{aligned}
$$

\therefore Stan dard deviation $\left(\sigma_{2}\right)=\sqrt{243.84}=15.61$
Since the mean of both the groups is same, the group with greater standard deviation will be more variable.
Thus, group B has more variability in the marks.

Q2 :
From the data given below state which group is more variable, \mathbf{A} or \mathbf{B} ?

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Answer:

Firstly, the standard deviation of group A is calculated as follows.

Marks	$\begin{gathered} \text { Group A } \\ f_{i} \end{gathered}$	Mid-point \boldsymbol{x}_{i}		$\boldsymbol{y}_{i}{ }^{\text {i }}$	$\boldsymbol{f}_{\boldsymbol{y}}$	$\boldsymbol{f} \boldsymbol{y}_{i}{ }^{2}$
10-20	9	15	â€"3	9	â€" 27	81
20-30	17	25	â€"2	4	â€"34	68
30-40	32	35	â€"1	1	âe"32	32

$40-50$	33	45	0	0	0	0
$50-60$	40	55	1	1	40	40
$60-70$	10	75	2	4	20	40
$70-80$	9	3	9	27	81	
Îf	150				$\hat{a} \notin \epsilon^{\prime \prime} 6$	342

Here, $h=10, N=150, A=45$

$$
\begin{aligned}
& \text { Mean }=\mathrm{A}+\frac{\sum_{i=1}^{7} f_{i} y_{i}}{\mathrm{~N}} \times h=45+\frac{(-6) \times 10}{150}=45-0.4=44.6 \\
& \begin{aligned}
\sigma_{1}^{2} & =\frac{h^{2}}{\mathrm{~N}^{2}}\left(\mathrm{~N} \sum_{i=1}^{7} f_{i} y_{i}-\left(\sum_{i=1}^{7} f_{i} y_{i}\right)^{2}\right) \\
& =\frac{100}{22500}\left(150 \times 342-(-6)^{2}\right) \\
& =\frac{1}{225}(51264) \\
& =227.84
\end{aligned}
\end{aligned}
$$

\therefore Standard deviation $\left(\sigma_{1}\right)=\sqrt{227.84}=15.09$

The standard deviation of group B is calculated as follows.

Marks	Group B f_{i}	Mid-point \boldsymbol{x}_{i}		$\boldsymbol{y}_{i}{ }^{\text {a }}$	$\boldsymbol{f y}_{i}$	$\boldsymbol{f}_{\boldsymbol{y}} \mathrm{l}^{2}$
10-20	10	15	â€"3	9	â€"30	90
20-30	20	25	â€"2	4	â€"40	80
30-40	30	35	â€"1	1	ấ"30	30
40-50	25	45	0	0	0	0
50-60	43	55	1	1	43	43
60-70	15	65	2	4	30	60
70-80	7	75	3	9	21	63
Îf	150				â€"6	366

$$
\begin{aligned}
& \text { Mean }=\mathrm{A}+\frac{\sum_{i=1}^{7} f_{i} y_{l}}{\mathrm{~N}} \times h=45+\frac{(-6) \times 10}{150}=45-0.4=44.6 \\
& \begin{aligned}
& \sigma_{2}^{2}=\frac{h^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum_{i=1}^{7} f_{i} y_{i}-\left(\sum_{i=1}^{7} f_{i} y_{l}\right)^{2}\right] \\
&=\frac{100}{22500}\left[150 \times 366-(-6)^{2}\right] \\
& \quad=\frac{1}{225}[54864]=243.84 \\
& \therefore \text { Standard deviation }\left(\sigma_{2}\right)=\sqrt{243.84}=15.61
\end{aligned}
\end{aligned}
$$

Since the mean of both the groups is same, the group with greater standard deviation will be more variable.
Thus, group B has more variability in the marks.

Q3 :
From the prices of shares X and Y below, find out which is more stable in value:

X	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

Answer :

The prices of the shares X are
$35,54,52,53,56,58,52,50,51,49$
Here, the number of observations, $\mathrm{N}=10$
\therefore Mean, $\overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{10} \mathrm{x}_{\mathrm{i}}=\frac{1}{10} \times 510=51$
The following table is obtained corresponding to shares X .

\boldsymbol{x}_{i}	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
35	$\hat{\mathrm{a} \epsilon^{\prime \prime} 16}$	256
54	3	9
52	1	1
53	2	4
56	5	25

58	7	49
52	1	1
50	$\hat{\mathrm{a} \notin "} 1$	1
51	0	0
49	$\hat{\mathrm{a} \not{ }^{\prime \prime} 2}$	4
		350

$\operatorname{Variance}\left(\sigma_{1}^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{10}(\mathrm{xi}-\overline{\mathrm{x}})^{2}=\frac{1}{10} \times 350=35$
$\therefore \mathrm{Stan}$ dard deviation $\left(\sigma_{1}\right)=\sqrt{35}=5.91$
C.V. $($ Shares $X)=\frac{\sigma_{1}}{\mathrm{x}} \times 100=\frac{5.91}{51} \times 100=11.58$

The prices of share Y are
$108,107,105,105,106,107,104,103,104,101$
\therefore Mean, $\overline{\mathrm{y}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{10} \mathrm{y}_{\mathrm{i}}=\frac{1}{10} \times 1050=105$
The following table is obtained corresponding to shares Y .

\boldsymbol{y}_{i}	$\left(y_{i}-\bar{y}\right)$	$\left(y_{i}-\bar{y}\right)^{2}$
108	3	9
107	2	4
105	0	0
105	0	0
106	1	1
107	2	4
104	â€"1	1
103	â€"2	4
104	â€"1	1
101	â€"4	16
		40

$\operatorname{Variance}\left(\sigma_{2}^{2}\right)=\frac{1}{N} \sum_{\mathrm{i}=1}^{10}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}=\frac{1}{10} \times 40=4$
\therefore Stan dard deviation $\left(\sigma_{2}\right)=\sqrt{4}=2$
\therefore C.V. $($ Shares Y $)=\frac{\sigma_{2}}{\mathrm{y}} \times 100=\frac{2}{105} \times 100=1.9=11.58$
C.V. of prices of shares X is greater than the C.V. of prices of shares Y.

Thus, the prices of shares Y are more stable than the prices of shares X .

Q4 :
An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wage earners	586	648
Mean of monthly wages	Rs 5253	Rs 5253
Variance of the distribution of wages	100	121

(i) Which firm A or B pays larger amount as monthly wages?
(ii) Which firm, A or B, shows greater variability in individual wages?

Answer:

(i) Monthly wages of firm $\mathrm{A}=\mathrm{Rs} 5253$

Number of wage earners in firm $A=586$
\therefore Total amount paid $=$ Rs 5253×586
Monthly wages of firm $B=R s 5253$
Number of wage earners in firm B $=648$
\therefore Total amount paid $=$ Rs 5253×648
Thus, firm B pays the larger amount as monthly wages as the number of wage earners in firm B are more than the number of wage earners in firm A.
(ii) Variance of the distribution of wages in firm $\mathrm{A}^{\left(\sigma_{1}^{2}\right)}=100$
\therefore Standard deviation of the distribution of wages in firm
$\mathrm{A}\left(\left(\overline{\mathrm{I}} \mathrm{f}_{1}\right)=\sqrt{100}=10\right.$
Variance of the distribution of wages in firm $B\left(\sigma_{2}^{2}\right)=121$
\therefore Standard deviation of the distribution of wages in firm $\mathrm{B}\left(\sigma_{2}^{2}\right)=\sqrt{121}=11$
The mean of monthly wages of both the firms is same i.e., 5253. Therefore, the firm with greater standard deviation will have more variability.

Thus, firm B has greater variability in the individual wages.

Q5 :
The following is the record of goals scored by team A in a football session:

No. of goals scored	0	1	2	3	4
No. of matches	1	9	7	5	3

For the team B, mean number of goals scored per match was 2 with a standard
deviation 1.25 goals. Find which team may be considered more consistent?

Answer :

The mean and the standard deviation of goals scored by team A are calculated as follows.

No. of goals scored	No. of matches	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}{ }^{2}$	$\boldsymbol{f}_{\boldsymbol{i}}{ }^{2}$
0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
	25	50		130

Mean $=\frac{\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}}=\frac{50}{25}=2$
Thus, the mean of both the teams is same.

$$
\begin{aligned}
\sigma & =\frac{1}{\mathrm{~N}} \sqrt{\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)^{2}} \\
& =\frac{1}{25} \sqrt{25 \times 130-(50)^{2}} \\
& =\frac{1}{25} \sqrt{750} \\
& =\frac{1}{25} \times 27.38 \\
& =1.09
\end{aligned}
$$

The standard deviation of team B is 1.25 goals.
The average number of goals scored by both the teams is same i.e., 2. Therefore, the team with lower standard deviation will be more consistent.

Thus, team A is more consistent than team B.

Q6:
The sum and sum of squares corresponding to length \boldsymbol{x} (in cm) and weight \boldsymbol{y}
(in gm) of 50 plant products are given below:
$\sum_{i=1}^{50} \mathrm{x}_{\mathrm{i}}=212, \quad \sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}{ }^{2}=902.8, \quad \sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}=261, \quad \sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}^{2}=1457.6$
Which is more varying, the length or weight?

Answer :

$\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}=212, \sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}{ }^{2}=902.8$
Here, $\mathrm{N}=50$
\therefore Mean, $\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}}=\frac{212}{50}=4.24$

$$
\begin{aligned}
& \operatorname{Variance}\left(\sigma_{1}^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{50}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2} \\
&=\frac{1}{50} \sum_{\mathrm{i}=1}^{500}\left(\mathrm{x}_{\mathrm{i}}-4.24\right)^{2} \\
&=\frac{1}{50} \sum_{\mathrm{i}=1}^{50}\left[\mathrm{x}_{\mathrm{i}}^{2}-8.48 \mathrm{x}_{\mathrm{i}}+17.97\right] \\
&=\frac{1}{50}\left[\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}^{2}-8.48 \sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}+17.97 \times 50\right] \\
&=\frac{1}{50}[902.8-8.48 \times(212)+898.5] \\
&=\frac{1}{50}[1801.3-1797.76] \\
&=\frac{1}{50} \times 3.54 \\
&=0.07
\end{aligned}
$$

\therefore Stan dard deviation, σ_{1} (Length) $=\sqrt{0.07}=0.26$
\therefore C.V. $($ Length $)=\frac{\mathrm{S} \tan \text { dard deviation }}{\text { Mean }} \times 100=\frac{0.26}{4.24} \times 100=6.13$
$\sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}=261, \sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}^{2}=1457.6$
Mean, $\overline{\mathrm{y}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}=\frac{1}{50} \times 261=5.22$
$\operatorname{Variance}\left(\sigma_{2}^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{30}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{50} \sum_{\mathrm{i}=1}^{50}\left(\mathrm{y}_{\mathrm{i}}-5.22\right)^{2} \\
& =\frac{1}{50} \sum_{\mathrm{i}=1}^{50}\left[\mathrm{y}_{\mathrm{i}}^{2}-10.44 \mathrm{y}_{\mathrm{i}}+27.24\right] \\
& =\frac{1}{50}\left[\sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}^{2}-10.44 \sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}+27.24 \times 50\right] \\
& =\frac{1}{50}[1457.6-10.44 \times(261)+1362] \\
& =\frac{1}{50}[2819.6-2724.84] \\
& =\frac{1}{50} \times 94.76 \\
& =1.89
\end{aligned}
$$

$\therefore \mathrm{Stan}$ dard deviation, σ_{2} (Weight $)=\sqrt{1.89}=1.37$
\therefore C.V. $($ Weight $)=\frac{\text { Stan dard deviation }}{\text { Mean }} \times 100=\frac{1.37}{5.22} \times 100=26.24$
Thus, C.V. of weights is greater than the C.V. of lengths. Therefore, weights vary more than the lengths.

Exercise Miscellaneous : Solutions of Questions on Page Number : 380
Q1 :
The mean and variance of eight observations are 9 and 9.25 , respectively. If six of the observations are 6, 7, $10,12,12$ and 13 , find the remaining two observations.

Answer :

Let the remaining two observations be x and y.
Therefore, the observations are $6,7,10,12,12,13, x, y$.

Mean, $\bar{x}=\frac{6+7+10+12+12+13+x+y}{8}=9$
$\Rightarrow 60+x+y=72$
$\Rightarrow x+y=12$

Variance $=9.25=\frac{1}{n} \sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}$
$9.25=\frac{1}{8}\left[(-3)^{2}+(-2)^{2}+(1)^{2}+(3)^{2}+(3)^{2}+(4)^{2}+x^{2}+y^{2}-2 \times 9(x+y)+2 \times(9)^{2}\right]$
$9.25=\frac{1}{8}\left[9+4+1+9+9+16+x^{2}+y^{2}-18(12)+162\right]$
[Using (1)]
$9.25=\frac{1}{8}\left[48+x^{2}+y^{2}-216+162\right]$
$9.25=\frac{1}{8}\left[x^{2}+y^{2}-6\right]$
$\Rightarrow x^{2}+y^{2}=80$
From (1), we obtain
$x^{2}+y^{2}+2 x y=144 \hat{a} €_{\mid}^{\prime}(3)$
From (2) and (3), we obtain
$2 x y=64$ â $€_{1}^{\prime}(4)$
Subtracting (4) from (2), we obtain
$x^{2}+y^{2}$ â€" $2 x y=80$ â€" $64=16$
$\Rightarrow x \hat{a ̂} \epsilon^{\prime \prime} y=\hat{A} \pm 4 \hat{a ̂} €_{I}^{\prime}$ (5)
Therefore, from (1) and (5), we obtain
$x=8$ and $y=4$, when x â€ " $y=4$
$x=4$ and $y=8$, when x â $\epsilon^{\prime \prime} y=\hat{a ̂} \epsilon^{\prime \prime} 4$
Thus, the remaining observations are 4 and 8.

Q2 :
The mean and variance of 7 observations are 8 and 16 , respectively. If five of the observations are $\mathbf{2 , 4 , 1 0 , 1 2}$ and 14 . Find the remaining two observations.

Answer :

Let the remaining two observations be x and y.

The observations are 2, 4, 10, 12, 14, x, y.
Mean, $\bar{x}=\frac{2+4+10+12+14+x+y}{7}=8$
$\Rightarrow 56=42+x+y$
$\Rightarrow x+y=14$
Variance $=16=\frac{1}{n} \sum_{i=1}^{7}\left(x_{i}-\bar{x}\right)^{2}$
$16=\frac{1}{7}\left[(-6)^{2}+(-4)^{2}+(2)^{2}+(4)^{2}+(6)^{2}+x^{2}+y^{2}-2 \times 8(x+y)+2 \times(8)^{2}\right]$
$16=\frac{1}{7}\left[36+16+4+16+36+x^{2}+y^{2}-16(14)+2(64)\right]$
...[Using (1)]
$16=\frac{1}{7}\left[108+x^{2}+y^{2}-224+128\right]$
$16=\frac{1}{7}\left[12+x^{2}+y^{2}\right]$
$\Rightarrow x^{2}+y^{2}=112-12=100$
$x^{2}+y^{2}=100$
From (1), we obtain
$x^{2}+y^{2}+2 x y=196$ â $€_{\mid}(3)$
From (2) and (3), we obtain
$2 x y=196$ â€" 100
$\Rightarrow 2 x y=96$ â€ ${ }_{\mathrm{I}}(4)$
Subtracting (4) from (2), we obtain
$x^{2}+y^{2} \hat{a ̂} €^{\prime \prime} 2 x y=100$ â $€^{\prime \prime} 96$
$\Rightarrow(x \text { â€" } y)^{2}=4$
$\Rightarrow x \hat{a ̂} €^{\prime \prime} y=\hat{A} \pm 2 \hat{a} €_{I}^{\prime}(5)$
Therefore, from (1) and (5), we obtain
$x=8$ and $y=6$ when x â€" $y=2$
$x=6$ and $y=8$ when x â€" $y=\hat{a ̂} \epsilon^{\prime \prime} 2$
Thus, the remaining observations are 6 and 8.

Q3 :

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.

Answer :

Let the observations be $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, and x_{6}.
It is given that mean is 8 and standard deviation is 4 .
Mean, $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}=8$
If each observation is multiplied by 3 and the resulting observations are y_{i}, then
$y_{i}=3 x$, i.e., $x_{i}=\frac{1}{3} y_{i}$, for $i=1$ to 6
\therefore New mean, $\bar{y}=\frac{y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}}{6}$

$$
\begin{aligned}
& =\frac{3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)}{6} \\
& =3 \times 8 \\
& =24
\end{aligned}
$$

...[Using (1)]

Standard deviation, $\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}}$
$\therefore(4)^{2}=\frac{1}{6} \sum_{j=1}^{6}\left(x_{j}-\bar{x}\right)^{2}$

$$
\begin{equation*}
\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}=96 \tag{2}
\end{equation*}
$$

From (1) and (2), it can be observed that,
$\bar{y}=3 \bar{x}$
$\bar{x}=\frac{1}{3} \bar{y}$
Substituting the values of x_{i} and \bar{x} in (2), we obtain
$\sum_{i=1}^{6}\left(\frac{1}{3} y_{i}-\frac{1}{3} \bar{y}\right)^{2}=96$
$\Rightarrow \sum_{i=1}^{6}\left(y_{i}-\bar{y}\right)^{2}=864$
Therefore, variance of new observations $=\left(\frac{1}{6} \times 864\right)=144$
Hence, the standard deviation of new observations is $\sqrt{144}=12$

Q4 :

Given that \bar{x} is the mean and $\overline{\mathrm{I}} f^{2}$ is the variance of n observations $x_{1}, x_{2} \hat{a} \nmid x_{n}$. Prove that the mean and variance of the observations $a x_{1}, a x_{2}, a x_{3} \hat{a} €_{\mid} a x_{n}$ are $a \bar{x}$ and $a^{2} I ̈ f^{2}$, respectively ($a \neq 0$).

Answer :

The given n observations are x_{1}, x_{2} â $€_{1} x_{n}$.
Mean $=\bar{x}$
Variance $=I ̈ f^{2}$
$\therefore \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right)^{2}$
If each observation is multiplied by a and the new observations are y_{i}, then

$$
\begin{aligned}
& y_{i}=a x_{i} \text { i.e., } x_{i}=\frac{1}{a} y_{i} \\
& \therefore \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{1}{n} \sum_{i=1}^{n} a x_{i}=\frac{a}{n} \sum_{i=1}^{n} x_{i}=a \bar{x} \quad \quad\left(\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)
\end{aligned}
$$

Therefore, mean of the observations, $a x_{1}, a x_{2} \hat{a} \epsilon_{\mid}^{\mid} a x_{n}$, is $a x$.
Substituting the values of x and \bar{x} in (1), we obtain
$\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{a} y_{i}-\frac{1}{a} \bar{y}\right)^{2}$
$\Rightarrow a^{2} \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
Thus, the variance of the observations, $a x_{1}, a x_{2} \hat{a} €_{\mid} a x_{n}$, is $a^{2} I f^{2}$.

Q5:
The mean and standard deviation of 20 observations are found to be 10 and 2 , respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted.
(ii) If it is replaced by 12.

Answer :

(i) Number of observations $(n)=20$

Incorrect mean = 10

Incorrect standard deviation = 2
$\bar{x}=\frac{1}{n} \sum_{i=1}^{20} x_{i}$
$10=\frac{1}{20} \sum_{i=1}^{20} x_{i}$
$\Rightarrow \sum_{i=1}^{20} x_{i}=200$
That is, incorrect sum of observations $=200$
Correct sum of observations $=200$ â€" $8=192$
\therefore Correct mean $=\frac{\text { Correct sum }}{19}=\frac{192}{19}=10.1$
Standard deviation $\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}}$
$\Rightarrow 2=\sqrt{\frac{1}{20} \text { Incorrect } \sum_{i=1}^{n} x_{i}^{2}-(10)^{2}}$
$\Rightarrow 4=\frac{1}{20}$ Incorrect $\sum_{i=1}^{n} x_{i}^{2}-100$
\Rightarrow Incorrect $\sum_{i=1}^{n} x_{i}{ }^{2}=2080$
\therefore Correct $\sum_{j=1}^{n} x_{i}^{2}=$ Incorrect $\sum_{i=1}^{n} x_{i}^{2}-(8)^{2}$
$=2080-64$
$=2016$
\therefore Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}{ }^{2}}{n}-(\text { Correct mean })^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{2016}{19}-(10.1)^{2}} \\
& =\sqrt{106.1-102.01} \\
& =\sqrt{4.09} \\
& =2.02
\end{aligned}
$$

(ii) When 8 is replaced by 12 ,

Incorrect sum of observations = 200
\therefore Correct sum of observations $=200$ â€" $8+12=204$

$$
\begin{aligned}
& \therefore \text { Correct mean }=\frac{\text { Correct sum }}{20}=\frac{204}{20}=10.2 \\
& \text { Standard deviation } \sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}} \\
& \begin{aligned}
\Rightarrow 2=\sqrt{\frac{1}{20}} \text { Incorrect } \sum_{i=1}^{n} x_{i}^{2}-(10)^{2}
\end{aligned} \\
& \begin{aligned}
\Rightarrow 4=\frac{1}{20} \text { Incorrect } \sum_{i=1}^{n} x_{i}^{2}-100
\end{aligned} \\
& \begin{aligned}
\Rightarrow \text { Incorrect } \sum_{i=1}^{n} x_{i}^{2}=2080 \\
\therefore \text { Correct } \sum_{i=1}^{n} x_{i}^{2}=\text { Incorrect } \sum_{i=1}^{n} x_{i}^{2}-(8)^{2}+(12)^{2} \\
\quad=2080-64+144 \\
\quad=2160
\end{aligned}
\end{aligned}
$$

\therefore Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{2160}{20}-(10.2)^{2}} \\
& =\sqrt{108-104.04} \\
& =\sqrt{3.96} \\
& =1.98
\end{aligned}
$$

Q6 :

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject	Mathematics	Physics	Chemistry
Mean	42	32	40.9
Standard deviation	12	15	20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

Answer :

Standard deviation of Mathematics $=12$
Standard deviation of Physics $=15$
The coefficient of variation (C.V.) is given by $\frac{\text { Standard deviation }}{\text { Mean }} \times 100$
C.V.(in Mathematics) $=\frac{12}{42} \times 100=28.57$
C.V.(in Physics) $=\frac{15}{32} \times 100=46.87$
C.V. $($ in Chemistry $)=\frac{20}{40.9} \times 100=48.89$

The subject with greater C.V. is more variable than others.
Therefore, the highest variability in marks is in Chemistry and the lowest variability in marks is in Mathematics.

Q7 :

The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18 . Find the mean and standard deviation if the incorrect observations are omitted.

Answer :

Number of observations $(n)=100$
Incorrect mean $(\bar{x})=20$
Incorrect standard deviation $(\sigma)=3$
$\Rightarrow 20=\frac{1}{100} \sum_{i=1}^{100} x_{i}$
$\Rightarrow \sum_{i=1}^{100} x_{i}=20 \times 100=2000$
\therefore Incorrect sum of observations $=2000$
\Rightarrow Correct sum of observations = 2000 â€" 21 â€" 21 â€" $18=2000$ â€" $60=1940$
\therefore Correct mean $=\frac{\text { Correct sum }}{100-3}=\frac{1940}{97}=20$

$$
\begin{aligned}
& \text { Standard deviation }(\sigma)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}-\frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}} \\
& \Rightarrow 3=\sqrt{\frac{1}{100} \times \text { Incorrect } \sum x_{i}^{2}-(20)^{2}} \\
& \Rightarrow \text { Incorrect } \sum x_{i}^{2}=100(9+400)=40900
\end{aligned}
$$

$$
\text { Correct } \sum_{i=1}^{n} x_{i}^{2}=\operatorname{Incorrect} \sum_{i=1}^{n} x_{i}^{2}-(21)^{2}-(21)^{2}-(18)^{2}
$$

$$
=40900-441-441-324
$$

$$
=39694
$$

\therefore Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{j}{ }^{2}}{n}-(\text { Correct mean })^{2}}$

$$
=\sqrt{\frac{39694}{97}-(20)^{2}}
$$

$$
=\sqrt{409.216-400}
$$

$$
=\sqrt{9.216}
$$

$$
=3.036
$$

