EXEMPLAR POINT (A Complete Institute For Students)

CREATING AND SETTING EXAMPLES FOR FUTURE...

XI PHYSICS TEST ON DIMENSIONAL & ERROR ANALYSIS

TIME : 1 HOUR

MAX. MARKS : 25

2

2

2

2

- 1. If Energy E is given by $E = \frac{a bt^2}{x}t = time$; x = distance. Find dimension of a and b.
- **2.** In p = $\left(\frac{a}{b}\right)e^{-\left[\frac{az}{\theta}\right]}$, find dimension of b? where P : Pressure, θ : Temperature, z : distance
- 3. Find the fractional error in z, if $z = \frac{A^4 B^{1/3}}{CD^{3/2}}$. If % error in A, B, C and D are respectively 1%, 2%, 3%, and 4%.
- 4. How can we reduce systematic and random errors in measurements?
- 5. Which of these formulae are correct dimensionally :

a. y = a sin $\frac{t}{x}$ (y = displacement; a = amplitude; t = time; x = position)

b.
$$v = \sqrt{\frac{E}{\rho}}$$
 (E = Modulous of Elasticity; ρ = density; v = velocity)

6. Terminal velocity v depends upon coefficient viscosity (η), radius 'r', density ' ρ '. Derive the formula dimensionally if $k = 6\pi$.

OR

The value of G is 6.67×10^{-11} Nm² kg⁻². Convert in C.G.S. system using dimensional analysis.

7. Capillary rise (h) is inversely proportional to (g) and it depends upon surface tension (s), radius (r), density (ρ). Derive the basic formula if $k = 2\cos\theta$.

OR

Quantity of water flowing Q (volume per second) depends upon pressure gradient (p / ℓ), radius (r), coefficient of viscosity (η). Derive the basic formula if $k = \pi / 8$.

- 8. The time period of oscillation of a simple pendulum is $T = 2\pi \sqrt{\frac{1}{g}}$, ℓ is about 10 cm and is known 1mm accuracy. The time period of oscillation is about 0.5s. The time of 100 oscillation is measured with a wrist watch of 1s resolution. What is the percentage error in determination of g? 3
- 9. Write the dimensional formula of the following :

a. Surface tension (S)b. Universal gravitational constant (G)c. Young's modulus of elasticity (Y)d. Coefficient of viscosity (η)e. Planck's constant [h]f. Torque (τ)3

10. Centripetal force measured as $F = \frac{mv^2}{R}$, if $m = 20 \pm 0.2$ kg, $v = 50 \pm 0.5$ m/s and $R = 100 \pm 2$ m, then write F with limit of errors. **3**