8.3 EXERCISE

SHORT ANSWER TYPE QUESTIONS

Q1. Find the area of the region bounded by the curves
$y^{2}=9 x, y=3 x$
Sol. We have, $y^{2}=9 x, y=3 x$
Solving the two equations, we have

$$
\begin{array}{rlrl}
& & (3 x)^{2} & =9 x \\
\Rightarrow & & 9 x^{2}-9 x & =0 \Rightarrow 9 x(x-1) \\
\therefore & x & x & =0,1
\end{array}
$$

Area of the shaded region
$=\operatorname{ar}($ region OAB$)-\operatorname{ar}(\triangle \mathrm{OAB})$
$=-\int_{0}^{1} y_{l} \cdot d x=\int_{0}^{1} \sqrt{9 x} d x-\int_{0}^{1} 3 x d x$

$=3 \int_{0}^{1} \sqrt{x} d x-3 \int_{0}^{1} x d x=3 \times \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{1}-3\left[\frac{x^{2}}{2}\right]_{0}^{1}$
$=2\left[(1)^{3 / 2}-0\right]-\frac{3}{2}\left[(1)^{2}-0\right]=2(1)-\frac{3}{2}(1)=2-\frac{3}{2}=\frac{1}{2}$ sq. units
Hence, the required area $=\frac{1}{2}$ sq. units.
Q2. Find the area of the region bounded by the parabola $y^{2}=2 p x$ and $x^{2}=2 p y$.
Sol. We are given that: $x^{2}=2 p y \ldots(i)$
and $\quad y^{2}=2 p x$
From eqn. (i) we get $y=\frac{x^{2}}{2 p}$
Putting the value of y in eqn.
(ii) we have

$$
\begin{aligned}
& \left(\frac{x^{2}}{2 p}\right)^{2}=2 p x \Rightarrow \frac{x^{4}}{4 p^{2}}=2 p x \\
& \Rightarrow x^{4}=8 p^{3} x \quad \Rightarrow \quad x^{4}-8 p^{3} x=0 \\
& \Rightarrow x\left(x^{3}-8 p^{3}\right)=0 \quad \therefore x=0,2 p
\end{aligned}
$$

$$
\begin{aligned}
& \text { Required area }=\text { Area of the region (OCBA - ODBA) } \\
& =\int_{0}^{2 p} \sqrt{2 p x} d x-\int_{0}^{2 p} \frac{x^{2}}{2 p} d x=\sqrt{2 p} \int_{0}^{2 p} \sqrt{x} d x-\frac{1}{2 p} \int_{0}^{2 p} x^{2} d x \\
& =\sqrt{2 p} \cdot \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{2 p}-\frac{1}{2 p} \cdot \frac{1}{3}\left[x^{3}\right]_{0}^{2 p} \\
& =\frac{2 \sqrt{2}}{3} \sqrt{p}\left[(2 p)^{3 / 2}-0\right]-\frac{1}{6 p}\left[(2 p)^{3}-0\right] \\
& =\frac{2 \sqrt{2}}{3} \sqrt{p} \cdot 2 \sqrt{2} p^{\frac{3}{2}}-\frac{1}{6 p} \cdot 8 p^{3} \\
& =\frac{8}{3} \cdot p^{2}-\frac{8}{6} p^{2}=\frac{8}{6} p^{2}=\frac{4}{3} p^{2} \text { sq. units }
\end{aligned}
$$

Hence, the required area $=\frac{4}{3} p^{2}$ sq. units.
Q3. Find the area of the region bounded by the curve $y=x^{3}$, $y=x+6$ and $x=0$.
Sol. We are given that: $y=x^{3}, y=x+6$ and $x=0$
Solving $y=x^{3}$ and $y=x+6$, we get

$$
\begin{array}{rlrl}
& x+6 & =x^{3} \\
\Rightarrow & x^{3}-x-6 & =0 \\
\Rightarrow & x^{2}(x-2)+2 x(x-2)+3(x-2) & =0 \\
\Rightarrow & (x-2)\left(x^{2}+2 x+3\right) & =0 \\
x^{2}+2 x+3=0 \text { has no real roots. } \quad \therefore & x=2
\end{array}
$$

\therefore Required area of the shaded region

$$
=\int_{0}^{2}(x+6) d x-\int_{0}^{2} x^{3} d x
$$

$$
=\left[\frac{x^{2}}{2}+6 x\right]_{0}^{2}-\frac{1}{4}\left[x^{4}\right]_{0}^{2}
$$

$$
=\left(\frac{4}{2}+12\right)-(0+0)-\frac{1}{4}\left[(2)^{4}-0\right]
$$

$$
=14-\frac{1}{4} \times 16=14-4=10 \text { sq. units. }
$$

Q4. Find the area of the region bounded by the curve $y^{2}=4 x$ and $x^{2}=4 y$.
Sol. We have $y^{2}=4 x$ and $x^{2}=4 y$.

$$
\begin{aligned}
y & =\frac{x^{2}}{4} \\
\Rightarrow \quad\left(\frac{x^{2}}{4}\right)^{2} & =4 x
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{x^{4}}{16}=4 x \\
& \Rightarrow x^{4} \\
& \Rightarrow=64 x \Rightarrow x^{4}-64 x=0 \\
& \Rightarrow x\left(x^{3}-64\right)=0 \\
& \therefore x=0, x=4 \\
& \text { Required area }=\int_{0}^{4} \sqrt{4 x} d x-\int_{0}^{4} \frac{x^{2}}{4} d x=2 \int_{0}^{4} \sqrt{x} d x-\frac{1}{4} \int_{0}^{4} x^{2} d x \\
&=2 \cdot \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{4}-\frac{1}{4} \cdot \frac{1}{3}\left[x^{3}\right]_{0}^{4} \\
&=\frac{4}{3}\left[(4)^{3 / 2}-0\right]-\frac{1}{12}\left[(4)^{3}-0\right]=\frac{4}{3}[8]-\frac{1}{12}[64] \\
&=\frac{32}{3}-\frac{16}{3}=\frac{16}{3} \text { sq. units }
\end{aligned}
$$

Hence, the required area $=\frac{16}{3}$ sq. units.
Q5. Find the area of the region included between $y^{2}=9 x$ and $y=x$.
Sol. Given that: $\quad y^{2}=9 x$ and $\quad y=x$
Solving eqns. (i) and (ii) we have

$$
\begin{align*}
& x^{2}=9 x \Rightarrow x^{2}-9 x=0 \tag{ii}\\
& x(x-9)=0 \quad \therefore x=0,9
\end{align*}
$$

Required area

$$
\begin{aligned}
& =\int_{0}^{9} \sqrt{9 x} d x-\int_{0}^{9} x d x=3 \int_{0}^{9} \sqrt{x} d x-\int_{0}^{9} x d x \\
& =3 \cdot \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{9}-\frac{1}{2}\left[x^{2}\right]_{0}^{9} \\
& =2\left[(9)^{3 / 2}-0\right]-\frac{1}{2}\left[(9)^{2}-0\right] \\
& =2(27)-\frac{1}{2}(81)=54-\frac{81}{2}=\frac{108-81}{2} \\
& =\frac{27}{2} \text { sq. units }
\end{aligned}
$$

Hence, the required area $=\frac{27}{2}$ sq. units.
Q6. Find the area of the region enclosed by the parabola $x^{2}=y$ and the line $y=x+2$.

Sol. Here, $x^{2}=y$ and $y=x+2$
$\therefore \quad x^{2}=x+2$
$\Rightarrow \quad x^{2}-x-2=0$
$\Rightarrow \quad x^{2}-2 x+x-2=0$
$\Rightarrow \quad x(x-2)+1(x-2)=0$
$\Rightarrow \quad(x-2)(x+1)=0$
$\therefore x=-1,2$
Graph of $y=x+2$

x	0	-2
y	2	0

Area of the required region

$$
\begin{aligned}
& =\int_{-1}^{2}(x+2) d x-\int_{-1}^{2} x^{2} d x=\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{2}-\frac{1}{3}\left[x^{3}\right]_{-1}^{2} \\
& =\left[\left(\frac{4}{2}+4\right)-\left(\frac{1}{2}-2\right)\right]-\frac{1}{3}[8-(-1)] \\
& =\left(6+\frac{3}{2}\right)-\frac{1}{3}(9)=\frac{15}{2}-3=\frac{9}{2} \text { sq. units }
\end{aligned}
$$

Hence, the required area $=\frac{9}{2}$ sq. units.
Q7. Find the area of the region bounded by the line $x=2$ and parabola $y^{2}=8 x$.
Sol. Here,

$$
\begin{aligned}
& y^{2}=8 x \text { and } x=2 \\
& y^{2}=8(2)=16
\end{aligned}
$$

$\therefore \quad y= \pm 4$
Required area

$$
\begin{aligned}
& =2 \int_{0}^{2} \sqrt{8 x} d x=2 \times 2 \sqrt{2} \int_{0}^{2} \sqrt{x} d x \\
& =4 \sqrt{2} \times \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{2} \\
& =\frac{8 \sqrt{2}}{3}\left[(2)^{3 / 2}\right]=\frac{8 \sqrt{2}}{3} \times 2 \sqrt{2}=\frac{32}{3} \text { sq. units }
\end{aligned}
$$

Hence, the area of the region $=\frac{32}{3}$ sq. units.
Q8. Sketch the region $\left\{(x, 0): y=\sqrt{4-x^{2}}\right\}$ and x-axis. Find the area of the region using integration.
Sol. Given that $\left\{(x, 0): y=\sqrt{4-x^{2}}\right\}$

$$
\begin{array}{lrl}
\Rightarrow & y^{2}=4-x^{2} \\
\Rightarrow & x^{2}+y^{2}=4 \text { which is a circle } .
\end{array}
$$

Required area

$$
=2 \cdot \int_{0}^{2} \sqrt{4-x^{2}} d x
$$

[Since circle is symmetrical about y-axis]

$$
\begin{aligned}
& =2 \cdot \int_{0}^{2} \sqrt{(2)^{2}-x^{2}} d x \\
& =2 \cdot\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2} \\
& =2\left[\left(\frac{2}{2} \sqrt{4-4}+2 \sin ^{-1}(1)\right)-(0+0)\right] \\
& =2\left[2 \cdot \frac{\pi}{2}\right]=2 \pi \text { sq. units }
\end{aligned}
$$

Hence, the required area $=2 \pi$ sq. units.
Q9. Calculate the area under the curve $y=2 \sqrt{x}$ included between the lines $x=0$ and $x=1$.
Sol. Given the curves $y=2 \sqrt{x}, x=0$ and $x=1$.

$$
y=2 \sqrt{x} \Rightarrow y^{2}=4 x \text { (Parabola) }
$$

Required area $=\int_{0}^{1}(2 \sqrt{x}) d x$

$$
=2 \times \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{1}
$$

$$
=\frac{4}{3}\left[(1)^{3 / 2}-0\right]
$$

$$
=\frac{4}{3} \text { sq. units }
$$

Hence, required area $=\frac{4}{3}$ sq. units.
Q10. Using integration, find the area of the region bounded by the line $2 y=5 x+7, x$-axis and the lines $x=2$ and $x=8$.
Sol. Given that: $2 y=5 x+7, x$-axis, $x=2$ and $x=8$.
Let us draw the graph of $2 y=5 x+7 \Rightarrow y=\frac{5 x+7}{2}$

x	1	-1
y	6	1

Area of the required shaded region
$=\int_{2}^{8}\left(\frac{5 x+7}{2}\right) d x=\frac{1}{2}\left[\frac{5}{2} x^{2}+7 x\right]_{2}^{8}$
$=\frac{1}{2}\left[\frac{5}{2}(64-4)+7(8-2)\right]$
$=\frac{1}{2}\left[\frac{5}{2} \times 60+7 \times 6\right]=\frac{1}{2}[150+42]$
$=\frac{1}{2} \times 192=96$ sq. units

Hence, the required area $=96$ sq. units.
Q11. Draw a rough sketch of the curve $y=\sqrt{x-1}$ in the interval $[1,5]$. Find the area under the curve and between the lines $x=1$ and $x=5$.
Sol. Here, we have $y=\sqrt{x-1}$
$\Rightarrow \quad y^{2}=x-1$ (Parabola)
Area of the required region
$=\int_{1}^{5} \sqrt{x-1} d x$
$=\frac{2}{3}\left[(x-1)^{3 / 2}\right]_{1}^{5}$
$=\frac{2}{3}\left[(5-1)^{3 / 2}-0\right]=\frac{2}{3} \times(4)^{3 / 2}$
$=\frac{2}{3} \times 8=\frac{16}{3}$ sq. units

Hence, the required area $=\frac{16}{3}$ sq. units.
Q12. Determine the area under the curve $y=\sqrt{a^{2}-x^{2}}$ included between the lines $x=0$ and $x=a$.
Sol. Here, we are given $y=\sqrt{a^{2}-x^{2}}$
$\begin{array}{ll}\Rightarrow & y^{2}=a^{2}-x^{2} \\ \Rightarrow & x^{2}+y^{2}=a^{2}\end{array}$
Area of the shaded region
$=2\left[(1)^{3 / 2}-0\right]-\frac{3}{2}\left[(1)^{2}-0\right]$
$=\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a}$

$=\left[\frac{a}{2} \sqrt{a^{2}-a^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{a}{a}-0-0\right]$
$=\frac{a^{2}}{2} \sin ^{-1}(1)=\frac{a^{2}}{2} \cdot \frac{\pi}{2}=\frac{\pi a^{2}}{4}$
Hence, the required area $=\frac{\pi a^{2}}{4}$ sq. units.
Q13. Find the area of the region bounded by $y=\sqrt{x}$ and $y=x$.
Sol. We are given the equations of curve $y=\sqrt{x}$ and line $y=x$.
Solving $y=\sqrt{x} \Rightarrow y^{2}=x$ and $y=x$, we get

$$
\begin{array}{rlrl}
x^{2} & =x \Rightarrow x^{2}-x=0 \\
\Rightarrow & x(x-1) & =0 & \therefore x=0,1
\end{array}
$$

Required area of the shaded region

$$
\begin{aligned}
& =\int_{0}^{1} \sqrt{x} d x-\int_{0}^{1} x d x \\
& =\frac{2}{3}\left[x^{3 / 2}\right]_{0}^{1}-\frac{1}{2}\left[x^{2}\right]_{0}^{1} \\
& =\frac{2}{3}\left[(1)^{3 / 2}-0\right]-\frac{1}{2}\left[(1)^{2}-0\right] \\
& =\frac{2}{3}-\frac{1}{2} \Rightarrow \frac{4-3}{6} \Rightarrow \frac{1}{6} \text { sq. units }
\end{aligned}
$$

Hence, the required area $=\frac{1}{6}$ sq. units.
Q14. Find the area enclosed by the curve $y=-x^{2}$ and the straight line $x+y+2=0$.
Sol. We are given that $y=-x^{2}$ or $x^{2}=-y$
and the line $x+y+2=0$
Solving the two equations, we get

$$
\begin{array}{rlrl}
& & x-x^{2}+2 & =0 \\
\Rightarrow & x^{2}-x-2 & =0 \\
\Rightarrow & x^{2}-2 x+x-2 & =0 \\
\Rightarrow & x(x-2)+1(x-2) & =0 \\
\Rightarrow & & (x-2)(x+1) & =0 \\
\therefore & & x & =-1,2
\end{array}
$$

Area of the required shaded region

$$
\begin{array}{ll}
& =\left|\int_{-1}^{2}(-x-2) d x-\int_{-1}^{2}-x^{2} d x\right| \\
\Rightarrow & \left|-\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{2}+\frac{1}{3}\left[x^{3}\right]_{-1}^{2}\right| \\
\Rightarrow & \left|-\left[\left(\frac{4}{2}+4\right)-\left(\frac{1}{2}-2\right)\right]+\frac{1}{3}(8+1)\right| \\
\Rightarrow & \left|-\left(6+\frac{3}{2}\right)+\frac{1}{3}(9)\right| \Rightarrow\left|-\frac{15}{2}+3\right| \\
\Rightarrow & \left|\frac{-15+6}{2}\right|=\left|\frac{-9}{2}\right|=\frac{9}{2} \text { sq. units }
\end{array}
$$

Q15. Find the area bounded by the curve $y=\sqrt{x}, x=2 y+3$ in the first quadrant and x-axis.
Sol. Given that: $y=\sqrt{x}, x=2 y+3$, first quadrant and x-axis.
Solving $y=\sqrt{x}$ and $x=2 y+3$, we get

$$
\begin{array}{rlrl}
& & y & =\sqrt{2 y+3} \Rightarrow y^{2}=2 y+3 \\
\Rightarrow & y^{2}-2 y-3 & =0 \Rightarrow y^{2}-3 y+y-3=0 \\
\Rightarrow & y(y-3)+1(y-3) & =0 \\
\Rightarrow & & (y+1)(y-3) & =0
\end{array}
$$

$$
\therefore \quad y=-1,3
$$

Area of shaded region

$$
\begin{aligned}
& =\int_{0}^{3}(2 y+3) d y-\int_{0}^{3} y^{2} d y \\
& =\left[2 \frac{y^{2}}{2}+3 y\right]_{0}^{3}-\frac{1}{3}\left[y^{3}\right]_{0}^{3}
\end{aligned}
$$

$=[(9+9)-(0+0)]-\frac{1}{3}[27-0]$
$=18-9=9$ sq. units
Hence, the required area $=9$ sq. units.

LONG ANSWER TYPE QUESTIONS

Q16. Find the area of the region bounded by the curve $y^{2}=2 x$ and $x^{2}+y^{2}=4 x$.
Sol. Equations of the curves are given by

$$
\text { and } \quad \begin{align*}
x^{2}+y^{2} & =4 x \tag{i}\\
y^{2} & =2 x
\end{align*}
$$

$$
\begin{array}{lr}
\Rightarrow & x^{2}-4 x+y^{2}=0 \\
\Rightarrow & x^{2}-4 x+4-4+y^{2}=0 \\
\Rightarrow & (x-2)^{2}+y^{2}=4
\end{array}
$$

Clearly it is the equation of a circle having its centre $(2,0)$ and radius 2.
Solving $x^{2}+y^{2}=4 x$ and $y^{2}=2 x$

$$
x^{2}+2 x=4 x
$$

$\Rightarrow x^{2}+2 x-4 x=0$
$\Rightarrow \quad x^{2}-2 x=0$
$\Rightarrow \quad x(x-2)=0$
$\therefore \quad x=0,2$
Area of the required region
$=2\left[\int_{0}^{2} \sqrt{4-(x-2)^{2}} d x-\int_{0}^{2} \sqrt{2 x} d x\right]$
[\therefore Parabola and circle both are symmetrical about x-axis.]
$=2\left[\frac{x-2}{2} \sqrt{4-(x-2)^{2}}+\frac{4}{2} \sin ^{-1} \frac{x-2}{2}\right]_{0}^{2}-2 \cdot \sqrt{2} \cdot \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{2}$
$=2\left[(0+0)-\left(0+2 \sin ^{-1}(-1)\right]-\frac{4 \sqrt{2}}{3}\left[2^{3 / 2}-0\right]\right.$
$=-2 \times 2 \cdot\left(-\frac{\pi}{2}\right)-\frac{4 \sqrt{2}}{3} \cdot 2 \sqrt{2}$
$=2 \pi-\frac{16}{3}=2\left(\pi-\frac{8}{3}\right)$ sq. units
Hence, the required area $=2\left(\pi-\frac{8}{3}\right)$ sq. units.
Q17. Find the area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$.
Sol. Required area $=\int_{0}^{\pi} \sin x d x+\int_{\pi}^{2 \pi}|\sin x| d x$

$$
\begin{aligned}
& =-[\cos x]_{0}^{\pi}+|(-\cos x)|_{\pi}^{2 \pi}=-[\cos \pi-\cos 0]+[\cos 2 \pi-\cos \pi] \\
& =-[-1-1]+[1+1]=2+2=4 \text { sq. units }
\end{aligned}
$$

Q18. Find the area of the region bounded by the triangle whose vertices are $(-1,1),(0,5)$ and $(3,2)$, using integration.
Sol. The coordinates of the vertices of $\triangle \mathrm{ABC}$ are given by $\mathrm{A}(-1,1)$, B $(0,5)$ and C $(3,2)$.

Equation of AB is $\quad y-1=\frac{5-1}{0+1}(x+1)$

$$
\begin{array}{lr}
\Rightarrow & y-1
\end{array}=4 x+4.10 y=4 x+5
$$

Equation of BC is $y-5=\frac{2-5}{3-0}(x-0)$

$$
\begin{array}{rlr}
\Rightarrow & y-5 & =-x \\
\therefore & y & =5-x \tag{ii}
\end{array}
$$

Equation of CA is

$$
\begin{array}{rlrl}
& & y-1 & =\frac{2-1}{3+1}(x+1) \\
\Rightarrow & y-1 & =\frac{1}{4} x+\frac{1}{4} \Rightarrow y=\frac{1}{4} x+\frac{1}{4}+1 \\
\therefore & y & =\frac{1}{4} x+\frac{5}{4}=\frac{1}{4}(5+x)
\end{array}
$$

Area of $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& =\int_{-1}^{0}(4 x+5) d x+\int_{0}^{3}(5-x) d x-\int_{-1}^{3} \frac{1}{4}(5+x) d x \\
& =\frac{4}{2}\left[x^{2}\right]_{-1}^{0}+5[x]_{-1}^{0}+5[x]_{0}^{3}-\frac{1}{2}\left[x^{2}\right]_{0}^{3}-\frac{1}{4}\left[5 x+\frac{x^{2}}{2}\right]_{-1}^{3}
\end{aligned}
$$

$$
\begin{aligned}
&= 2(0-1)+5(0+1)+5(3-0)-\frac{1}{2}(9-0) \\
&-\frac{1}{4}\left[\left(15+\frac{9}{2}\right)-\left(-5+\frac{1}{2}\right)\right] \\
&=-2+5+15-\frac{9}{2}-\frac{1}{4}\left(\frac{39}{2}+\frac{9}{2}\right) \\
&=18-\frac{9}{2}-\frac{1}{4} \times \frac{48}{2}=18-\frac{9}{2}-6=12-\frac{9}{2}=\frac{15}{2} \text { sq. units }
\end{aligned}
$$

Hence, the required area $=\frac{15}{2}$ sq. units.
Q19. Draw a rough sketch of the region $\left\{(x, y): y^{2} \leq 6 a x\right.$ and $x^{2}+y^{2} \leq$ $\left.16 a^{2}\right\}$. Also find the area of the region sketched using method of integration.
Sol. Given that:
$\left\{(x, y): y^{2} \leq 6 a x\right.$ and $\left.x^{2}+y^{2} \leq 16 a^{2}\right\}$
Equation of Parabola is

$$
\begin{equation*}
y^{2}=6 a x \tag{i}
\end{equation*}
$$

and equation of circle is

$$
\begin{equation*}
x^{2}+y^{2} \leq 16 a^{2} \tag{ii}
\end{equation*}
$$

Solving eqns. (i) and (ii) we get

$$
x^{2}+6 a x=16 a^{2}
$$

$\Rightarrow \quad x^{2}+6 a x-16 a^{2}=0$
$\Rightarrow \quad x^{2}+8 a x-2 a x-16 a^{2}=0$
$\Rightarrow \quad x(x+8 a)-2 a(x+8 a)=0$
$\Rightarrow \quad(x+8 a)(x-2 a)=0$
$\therefore x=2 a$ and $x=-8 a$. (Rejected as it is out of region)
Area of the required shaded region

$$
\begin{aligned}
& =2\left[\int_{0}^{2 a} \sqrt{6 a x} d x+\int_{2 a}^{4 a} \sqrt{16 a^{2}-x^{2}} d x\right] \\
& =2\left[\sqrt{6 a} \int_{0}^{2 a} \sqrt{x} d x+\int_{2 a}^{4 a} \sqrt{(4 a)^{2}-x^{2}} d x\right] \\
& =2 \sqrt{6 a} \cdot \frac{2}{3} \cdot\left[x^{3 / 2}\right]_{0}^{2 a}+2\left[\frac{x}{2} \sqrt{(4 a)^{2}-x^{2}}+\frac{16 a^{2}}{2} \sin ^{-1} \frac{x}{4 a}\right]_{2 a}^{4 a} \\
& =\frac{4 \sqrt{6}}{3} \cdot \sqrt{a}\left[(2 a)^{3 / 2}-0\right]+\left[x \sqrt{(4 a)^{2}-x^{2}}+16 a^{2} \sin ^{-1} \frac{x}{4 a}\right]_{2 a}^{4 a}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 \sqrt{6}}{3} \sqrt{a} \cdot 2 \sqrt{2} \cdot a^{3 / 2}+\left[0+16 a^{2} \sin ^{-1}\left(\frac{4 a}{4 a}\right)-2 a \sqrt{16 a^{2}-4 a^{2}}\right. \\
& \left.-16 a^{2} \sin ^{-1} \frac{2 a}{4 a}\right] \\
& =\frac{8 \sqrt{12}}{3} a^{2}+\left[16 a^{2} \cdot \sin ^{-1}(1)-2 a \sqrt{12 a^{2}}-16 a^{2} \sin ^{-1} \frac{1}{2}\right] \\
& =\frac{16 \sqrt{3}}{3} a^{2}+\left[16 a^{2} \cdot \frac{\pi}{2}-2 a \cdot 2 \sqrt{3} a-16 a^{2} \cdot \frac{\pi}{6}\right] \\
& =\frac{16 \sqrt{3}}{3} a^{2}+8 \pi a^{2}-4 \sqrt{3} a^{2}-\frac{8}{3} \pi a^{2} \\
& =\left(\frac{16 \sqrt{3}}{3}-4 \sqrt{3}\right) a^{2}+\frac{16}{3} \pi a^{2}=\frac{4 \sqrt{3}}{3} a^{2}+\frac{16}{3} \pi a^{2} \\
& =\frac{4}{3}(\sqrt{3}+4 \pi) a^{2}
\end{aligned}
$$

Hence, required area $=\frac{4}{3}(\sqrt{3}+4 \pi) a^{2}$ sq. units.
Q20. Compute the area bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y=7$.
Sol. Given that: $\quad x+2 y=2$

and \quad| $y-x$ | $=1$ |
| ---: | :--- |
| $2 x+y$ | $=7$ |

and $\quad 2 x+y=7$

x	0	$7 / 2$
y	7	0

Solving eqns. (ii) and (iii) we get

$$
\begin{array}{rlrl}
& & y & =1+x \\
& & 2 x+1+x & =7 \\
& & 3 x & =6 \\
\therefore & & x & =2 \\
& & y & =1+2 \\
& & =3
\end{array}
$$

Coordinates of $B=(2,3)$
Solving eqns. (i) and (iii)
we get

$$
\begin{aligned}
& & x+2 y & =2 \\
& & x & =2-2 y \\
& & 2 x+y & =7 \\
& & 2(2-2 y)+y & =7 \\
& \therefore & 4-4 y+y & =7 \Rightarrow-3 y=3 \\
& & y & =-1 \text { and } x=4
\end{aligned}
$$

x	0	-1
y	1	0

\therefore Coordinates of $C=(4,-1)$ and coordinates of $A=(0,1)$.
Taking the limits on y-axis, we get

$$
\begin{aligned}
& \int_{-1}^{3} x_{\mathrm{BC}} d y-\int_{-1}^{1} x_{\mathrm{AC}} d y-\int_{1}^{3} x_{\mathrm{AB}} d y \\
& \quad=\int_{-1}^{3} \frac{7-y}{2} d y-\int_{-1}^{1}(2-2 y) d y-\int_{1}^{3}(y-1) d y \\
& \quad=\frac{1}{2}\left[7 y-\frac{y^{2}}{2}\right]_{-1}^{3}-2\left[y-\frac{y^{2}}{2}\right]_{-1}^{1}-\left[\frac{y^{2}}{2}-y\right]_{1}^{3} \\
& \quad=\frac{1}{2}\left[\left(21-\frac{9}{2}\right)-\left(-7-\frac{1}{2}\right)\right]-2\left[\left(1-\frac{1}{2}\right)-\left(-1-\frac{1}{2}\right)\right] \\
& \left.\quad=\frac{1}{2}\left[\frac{33}{2}+\frac{15}{2}\right]-2\left[\frac{9}{2}-3\right)-\left(\frac{1}{2}-1\right)\right] \\
& \quad=\frac{1}{2} \times 24-2 \times 2-2 \Rightarrow 12-4-2=6 \text { sq.units }
\end{aligned}
$$

Hence, the required area $=6$ sq. units.
Q21. Find the area bounded by the lines $y=4 x+5, y=5-x$ and $4 y=x+5$.
Sol. Given that

$$
\begin{align*}
& y \tag{i}\\
\text { and } \quad y & =4 x+5 \tag{ii}\\
y & =5-x \\
4 y & =x+5 \tag{iii}
\end{align*}
$$

x	0	$-5 / 4$				
y	5	0				
y	5	0		x	5	
:---:	:---:	:---:	:---:	:---:		
y	0	-5				
y	$5 / 4$	0				

Solving eq. (i) and (ii) we get

$$
\begin{aligned}
& & 4 x+5 & =5-x \\
\Rightarrow & & x & =0 \text { and } y=5
\end{aligned}
$$

\therefore Coordinates of $A=(0,5)$
Solving eq. (ii) and (iii)

$$
\begin{aligned}
y & =5-x \\
4 y & =x+5 \\
5 y & =10
\end{aligned}
$$

$\therefore y=2$ and $x=3$
\therefore Coordinates of $\mathrm{B}=(3,2)$
Solving eq. (i) and (iii)

$$
y=4 x+5
$$

$$
\begin{aligned}
& 4 y=x+5 \\
& \Rightarrow \quad 4(4 x+5)=x+5 \\
& \Rightarrow \quad 16 x+20=x+5 \Rightarrow 15 x=-15 \\
& \therefore \quad x=-1 \text { and } y=1
\end{aligned}
$$

\therefore Coordinates of $C=(-1,1)$.
\therefore Area of required regions
$=\int_{-1}^{0} y_{\mathrm{AC}} d x+\int_{0}^{3} y_{\mathrm{AB}} d x-\int_{-1}^{3} y_{\mathrm{CB}} d x$
$=\int_{-1}^{0}(4 x+5) d x+\int_{0}^{3}(5-x) d x-\int_{-1}^{3} \frac{x+5}{4} d x$
$=\left[4 \frac{x^{2}}{2}+5 x\right]_{-1}^{0}+\left[5 x-\frac{x^{2}}{2}\right]_{0}^{3}-\frac{1}{4}\left[\frac{x^{2}}{2}+5 x\right]_{-1}^{3}$
$=[(0+0)-(2-5)]+\left[\left(15-\frac{9}{2}\right)-(0-0)\right]-\frac{1}{4}\left[\left(\frac{9}{2}+15\right)-\left(\frac{1}{2}-5\right)\right]$
$=3+\frac{21}{2}-\frac{1}{4}\left[\frac{39}{2}+\frac{9}{2}\right]=3+\frac{21}{2}-\frac{1}{4} \times 24 \Rightarrow 3+\frac{21}{2}-6$
$=\frac{15}{2}$ sq. units
Hence, the required area $=\frac{15}{2}$ sq. units.
Q22. Find the area bounded by the curve $y=2 \cos x$ and the x-axis
from $x=0$ to $x=2 \pi$.
Sol. Given equation of the curve is $y=2 \cos x$

\therefore Area of the shaded region

$$
\int_{0}^{2 \pi} 2 \cos x d x=\int_{0}^{\pi / 2} 2 \cos x d x+\int_{\pi / 2}^{3 \pi / 2}|2 \cos x| d x+\int_{3 \pi / 2}^{2 \pi} 2 \cos x d x
$$

$$
\begin{aligned}
& =2[\sin x]_{0}^{\pi / 2}+\left|[2 \sin x]_{\pi / 2}^{3 \pi / 2}\right|+2[\sin x]_{3 \pi / 2}^{2 \pi} \\
& =2\left[\sin \frac{\pi}{2}-\sin 0\right]+\left|2\left(\sin \frac{3 \pi}{2}-\sin \frac{\pi}{2}\right)\right| \\
& +2\left[\sin 2 \pi-\sin \frac{3 \pi}{2}\right] \\
& =2(1)+|2(-1-1)|+2(0+1)=2+4+2=8 \text { sq. units }
\end{aligned}
$$

Q23. Draw a rough sketch of the given curve $y=1+|x+1|, x=-3$, $x=3, y=0$ and find the area of the region bounded by them, using integration.
Sol. Given equations are
$y=1+|x+1|, x=-3$
and $x=3, y=0$
Taking $y=1+|x+1|$
$\Rightarrow \quad y=1+x+1$
$\Rightarrow \quad y=x+2$
and $\quad y=1-x-1 \Rightarrow y=-x$

On solving we get $x=-1$
Area of the required regions

$$
\begin{aligned}
& =\int_{-3}^{-1}-x d x+\int_{-1}^{3}(x+2) d x \\
& =-\left[\frac{x^{2}}{2}\right]_{-3}^{-1}+\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{3}=-\left[\frac{1}{2}-\frac{9}{2}\right]+\left[\left(\frac{9}{2}+6\right)-\left(\frac{1}{2}-2\right)\right] \\
& =-(-4)+\left[\frac{21}{2}+\frac{3}{2}\right]=4+12=16 \text { sq. units }
\end{aligned}
$$

Hence, the required area $=16$ sq. units.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer from the given four options in each of the Exercises 24 to 34 .

Q24. The area of the region bounded by the y-axis, $y=\cos x$ and $y=\sin x$, where $0 \leq x \leq \frac{\pi}{2}$ is
(a) $\sqrt{2}$ sq. units
(b) $(\sqrt{2}+1)$ sq. units
(c) $(\sqrt{2}-1)$ sq. units
(d) $(2 \sqrt{2}-1)$ sq. units

Sol. Given that y-axis, $y=\cos x, y=\sin x, 0 \leq x \leq \frac{\pi}{2}$

$$
\begin{aligned}
\text { Required area } & =\int_{0}^{\pi / 4} \cos x d x-\int_{0}^{\pi / 4} \sin x d x \\
& =[\sin x]_{0}^{\pi / 4}-[-\cos x]_{0}^{\pi / 4} \\
& =\left[\sin \frac{\pi}{4}-\sin 0\right]+\left[\cos \frac{\pi}{4}-\cos 0\right] \\
& =\left[\frac{1}{\sqrt{2}}-0+\frac{1}{\sqrt{2}}-1\right]=\frac{2}{\sqrt{2}}-1 \\
& =(\sqrt{2}-1) \text { sq. units }
\end{aligned}
$$

Hence, the correct option is (c).
Q25. The area of the region bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$ is
(a) $\frac{3}{8}$ sq. units
(b) $\frac{5}{8}$ sq. units
(c) $\frac{7}{8}$ sq. units
(d) $\frac{9}{8}$ sq. units

Sol. Given that: The equation of parabola is $x^{2}=4 y$
and equation of straight line is $x=4 y-2$

Solving eqn. (i) and (ii) we get

$$
y=\frac{x^{2}}{4}
$$

$$
\begin{aligned}
& x=4\left(\frac{x^{2}}{4}\right)-2 \\
& \Rightarrow \\
& \Rightarrow x=x^{2}-2 \\
& \Rightarrow x(x-2)+1(x-2)=0 \Rightarrow(x-2)(x+1)=0 \therefore x=-1, x=2 \\
& \text { Required area }=\int_{-1}^{2} \frac{x+2}{4} d x-\int_{-1}^{2} \frac{x^{2}}{4} d x \\
& = \\
& =\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{2}-\frac{1}{4} \cdot \frac{1}{3}\left[x^{3}\right]_{-1}^{2} \\
& = \\
& =\frac{1}{4}\left[\left(\frac{4}{2}+4\right)-\left(\frac{1}{2}-2\right)\right]-\frac{1}{12}[8+1] \\
& = \\
& =\frac{1}{4}\left[6+\frac{3}{2}\right]-\frac{1}{12}[9]=\frac{1}{4} \times \frac{15}{2}-\frac{3}{4} \\
& =
\end{aligned}
$$

Hence, the correct option is (d).
Q26. The area of the region bounded by the curve $y=\sqrt{16-x^{2}}$ and x-axis is
(a) 8π sq. units
(b) 20π sq. units
(c) 16π sq. units
(d) 256π sq. units

Sol. Here, equation of curve is $y=\sqrt{16-x^{2}}$
Required area

$$
\begin{aligned}
& =2\left[\int_{0}^{4} \sqrt{16-x^{2}} d x\right] \\
& =2\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4} \\
& =2\left[\left(0+8 \sin ^{-1} \frac{4}{4}\right)-(0+0)\right] \\
& =2\left[8 \sin ^{-1}(1)\right]=16 \cdot \frac{\pi}{2}=8 \pi \text { sq. units }
\end{aligned}
$$

Hence, the correct option is (a).
Q27. Area of the region in the first quadrant enclosed by the x-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$ is
(a) 16π sq. units
(b) 4π sq. units
(c) 32π sq. units
(d) 24 sq. units

Sol. Given equation of circle is $x^{2}+y^{2}=32 \Rightarrow x^{2}+y^{2}=(4 \sqrt{2})^{2}$ and the line is $y=x$ and the x-axis.
Solving the two equations we have

$$
\begin{aligned}
& x^{2}+x^{2}=32 \\
& \Rightarrow \quad 2 x^{2}=32 \\
& \Rightarrow \quad x^{2}=16 \\
& \therefore \quad x= \pm 4
\end{aligned}
$$

Required area

$$
\begin{aligned}
& =\int_{0}^{4} x d x+\int_{4}^{4 \sqrt{2}} \sqrt{(4 \sqrt{2})^{2}-x^{2}} d x \\
& =\frac{1}{2}\left[x^{2}\right]_{0}^{4}+\left[\frac{x}{2} \sqrt{(4 \sqrt{2})^{2}-x^{2}}+\frac{32}{2} \sin ^{-1} \frac{x}{4 \sqrt{2}}\right]_{4}^{4 \sqrt{2}} \\
& =\frac{1}{2}[16-0]+\left[0+16 \sin ^{-1}\left(\frac{4 \sqrt{2}}{4 \sqrt{2}}\right)-2 \sqrt{32-16}-16 \sin ^{-1} \frac{4}{4 \sqrt{2}}\right] \\
& =8+\left[16 \sin ^{-1}(1)-8-16 \sin ^{-1} \frac{1}{\sqrt{2}}\right] \\
& =8+16 \cdot \frac{\pi}{2}-8-16 \cdot \frac{\pi}{4}=8 \pi-4 \pi=4 \pi \text { sq. units }
\end{aligned}
$$

Hence, the correct option is (b).
Q28. Area of the region bounded by the curve $y=\cos x$ between $x=0$ and $x=\pi$ is
(a) 2 sq. units
(b) 4 sq. units
(c) 3 sq. units
(d) 1 sq. units

Sol. Given that: $y=\cos x, x=0, x=\pi$
Required area

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \cos x d x+\left|\int_{\pi / 2}^{\pi} \cos x d x\right| \\
& =[\sin x]_{0}^{\pi / 2}+\left|(\sin x)_{\pi / 2}^{\pi}\right| \\
& =\left[\sin \frac{\pi}{2}-\sin 0\right]+\left|\left[\sin \pi-\sin \frac{\pi}{2}\right]\right| \\
& =(1-0)+|0-1|=1+1=2 \text { sq. units }
\end{aligned}
$$

Hence, the correct option is (a).
Q29. The area of the region bounded by parabola $y^{2}=x$ and the straight line $2 y=x$ is
(a) $\frac{4}{3}$ sq. units
(b) 1 sq. unit
(c) $\frac{2}{3}$ sq. units
(d) $\frac{1}{3}$ sq. units

Sol. Given equation of parabola is $y^{2}=x$
and equation of straight line is $2 y=x$
Solving eqns. (i) and (ii) we get
$\left(\frac{x}{2}\right)^{2}=x \Rightarrow \frac{x^{2}}{4}=x \Rightarrow x^{2}=4 x$
$\Rightarrow x(x-4)=0 \quad \therefore x=0,4$
Required area

$$
\begin{aligned}
& =\int_{0}^{4} \sqrt{x} d x-\int_{0}^{4} \frac{x}{2} d x \\
& =\frac{2}{3}\left[x^{3 / 2}\right]_{0}^{4}-\frac{1}{2} \cdot \frac{1}{2}\left[x^{2}\right]_{0}^{4} \\
& =\frac{2}{3}\left[(4)^{3 / 2}-0\right]-\frac{1}{4}\left[(4)^{2}-0\right]=\frac{2}{3} \times 8-\frac{1}{4} \times 16 \\
& =\frac{16}{3}-4=\frac{4}{3} \text { sq. units }
\end{aligned}
$$

Hence, the correct answer is (a).
Q30. The area of the region bounded by the curve $y=\sin x$, between the ordinates $x=0$ and $x=\frac{\pi}{2}$ and the x-axis is
(a) 2 sq. units
(b) 4 sq. units
(c) 3 sq. units
(d) 1 sq. units

Sol. Given equation of curve is $y=\sin x$ between $x=0$ and $x=\frac{\pi}{2}$
Area of required region

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \sin x d x=-[\cos x]_{0}^{\pi / 2} \\
& =-\left[\cos \frac{\pi}{2}-\cos 0\right] \\
& =-[0-1]=1 \text { sq. unit }
\end{aligned}
$$

Hence, the correct answer is (d).

Q31. The area of the region bounded by the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is
(a) 20π sq. units
(b) $20 \pi^{2}$ sq. units
(c) $16 \pi^{2}$ sq. units
(d) 25π sq. units

Sol. Given equation of ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$

$$
\begin{aligned}
& \Rightarrow \frac{y^{2}}{16}=1-\frac{x^{2}}{25} \Rightarrow y^{2}=\frac{16}{25}\left(25-x^{2}\right) \\
& \therefore \quad y=\frac{4}{5} \sqrt{25-x^{2}}
\end{aligned}
$$

\therefore Since the ellipse is symmetrical about the axes.
\therefore Required area $=4 \times \int_{0}^{5} \frac{4}{5} \sqrt{25-x^{2}} d x=4 \times \frac{4}{5} \int_{0}^{5} \sqrt{(5)^{2}-x^{2}} d x$
$=\frac{16}{5}\left[\frac{x}{2} \sqrt{(5)^{2}-x^{2}}+\frac{25}{2} \sin ^{-1} \frac{x}{5}\right]_{0}^{5}$
$=\frac{16}{5}\left[0+\frac{25}{2} \cdot \sin ^{-1}\left(\frac{5}{5}\right)-0-0\right]=\frac{16}{5}\left[\frac{25}{2} \cdot \sin ^{-1}(1)\right]$
$=\frac{16}{5}\left[\frac{25}{2} \cdot \frac{\pi}{2}\right]=20 \pi$ sq. units
Hence, the correct answer is (a).
Q32. The area of the region bounded by the circle $x^{2}+y^{2}=1$ is
(a) 2π sq. units
(b) π sq. units
(c) 3π sq. units
(d) 4π sq. units

Sol. Given equation of circle is
$x^{2}+y^{2}=1 \Rightarrow y=\sqrt{1-x^{2}}$
Since the circle is symmetrical about the axes.
\therefore Required area $=4 \times \int_{0}^{1} \sqrt{1-x^{2}} d x$
$=4\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{0}^{1}$
$=4\left[0+\frac{1}{2} \sin ^{-1}(1)-0-0\right]$
$=4 \times \frac{1}{2} \times \frac{\pi}{2}=\pi$ sq. units

Hence, the correct answer is (b).
Q33. The area of the region bounded by the curve $y=x+1$ and the lines $x=2$ and $x=3$ is
(a) $\frac{7}{2}$ sq. units
(b) $\frac{9}{2}$ sq. units
(c) $\frac{11}{2}$ sq. units
(d) $\frac{13}{2}$ sq. units

Sol. Given equation of lines are

$$
y=x+1, x=2 \text { and } x=3
$$

Required area

$$
\begin{aligned}
& =\int_{2}^{3}(x+1) d x=\left[\frac{x^{2}}{2}+x\right]_{2}^{3} \\
& =\left(\frac{9}{2}+3\right)-\left(\frac{4}{2}+2\right) \\
& =\frac{15}{2}-4=\frac{7}{2} \text { sq.units }
\end{aligned}
$$

Hence, the correct option is (a).
Q34. The area of the region bounded by the curve $x=2 y+3$ and the
lines $y=1$ and $y=-1$ is
(a) 4 sq. units
(b) $\frac{3}{2}$ sq.units
(c) 6 sq. units
(d) 8 sq. units

Sol. Given equations of lines are $x=2 y+3, y=1$ and $y=-1$

$$
\begin{aligned}
\text { Required area } & =\int_{-1}^{1}(2 y+3) d y \\
& =2 \cdot \frac{1}{2}\left[y^{2}\right]_{-1}^{1}+3[y]_{-1}^{1} \\
& =(1-1)+3(1+1)=6 \text { sq. units }
\end{aligned}
$$

Hence, the correct answer is (c).

