## Unit 5(Understanding Quadrilaterals $\mathcal{E}^{3}$ Practical Geometry)

## Multiple Choice Questions

Question. 1 If three angles of a quadrilateral are each equal to $75^{\circ}$, then, the fourth angle is(a) $150^{\circ}$ (b) $135^{\circ}$
(c) $45^{\circ}$ (d) $75^{\circ}$

Solution.
(b) Given, three angles of quadrilateral $=75^{\circ}$

Let the fourth angle be $x^{\circ}$.
Then, according to the property, $75^{\circ}+75^{\circ}+75^{\circ}+x^{\circ}=360^{\circ}$, since sum of the angles of a quadriateral is $360^{\circ}$.
So, $225^{\circ}+x^{\circ}=360^{\circ}$ or $x^{\circ}=360^{\circ}-225^{\circ}=135^{\circ}$
Hence, the fourth angle is $135^{\circ}$.

Question. 2 For which of the following, diagonals bisect each other?
(a) Square (b) Kite
(c) Trapezium (d) Quadrilateral

Solution. (a) We know that, the diagonals of a square bisect each other but the diagonals of kite, trapezium and quadrilateral do not bisect each other.

Question. 3 In which of the following figures, all angles are equal?
(a) Rectangle (b) Kite
(c) Trapezium (d) Rhombus

Solution. (a) In a rectangle, all angles are equal, i.e. all equal to $90^{\circ}$.

Question. 4 For which of the following figures, diagonals are perpendicular to each other?
(a) Parallelogram (b) Kite
(c) Trapezium (d) Rectangle

Solution. (b) The diagonals of a kite are perpendicular to each other.

Question. 5 For which of the following figures, diagonals are equal?
(a) Trapezium (b) Rhombus
(c) Parallelogram (d) Rectangle

Solution. (d) By the property of a rectangle, we know that its diagonals are equal.

Question. 6 Which of the following figures satisfy the following properties?
All sides are congruent
All angles are right angles.
Opposite sides are parallel.

(a) $P$



(d) $S$

Solution. (c) We know that all the properties mentioned above are related to square and we can observe that figure R resembles a square.

Question. 7 Which of the following figures satisfy the following property?Has two pairs of congruent adjacent sides.



(c) $R$

(d) $S$
(a) $P$
(b) $Q$

Solution. (c) We know that, a kite has two pairs of congruent adjacent sides and we can observe that figure R resembles a kite.

Question. 8 Which of the following figures satisfy the following property? Only one pair of sides are parallel.

(a) $P$



Solution. (a) We know that, in a trapezium, only one pair of sides are parallel and we can observe that figure $P$ resembles a trapezium.

Question. 9 Which of the following figures do not satisfy any of the following properties? All sides are equal.
All angles are right angles.
Opposite sides are parallel.

(a) $P$
(b) $Q$
(c) $R$
(d) $S$

Solution. (a) On observing the above figures, we conclude that the figure $P$ does not satisfy any of the given properties.

Question. 10 Which of the following properties describe a trapezium?
(a) A pair of opposite sides is parallel
(b) The diagonals bisect each other
(c) The diagonals are perpendicular to each other
(d) The diagonals are equal

Solution. (a) We know that, in a trapezium, a pair of opposite sides are parallel.

Question. 11 Which of the following is a propefay of a parallelogram?
(a) Opposite sides are parallel
(b) The diagonals bisect each other at right angles
(c) The diagonals are perpendicular to each other
(d) All angles are equal

Solution. (a) We,know that, in a parallelogram, opposite sides are parallel.

Question. 12 What is the maximum number of obtuse angles that a quadrilateral can have?
(a) 1 (b) 2
(c) 3 (d) 4

Solution. (c) We know that, the sum of all the angles of a quadrilateral is $360^{\circ}$.
Also, an obtuse angle is more than $90^{\circ}$ and less than $180^{\circ}$.
Thus, all the angles of a quadrilateral cannot be obtuse.
Hence, almost 3 angles can be obtuse.

Question. 13 How many non-overlapping triangles can we make in a-n-gon (polygon having n sides), by joining the vertices?
(a) $\mathrm{n}-1$ (b) $\mathrm{n}-2$
(c) $n-3$ (d) $n-4$

Solution. (b) The number of non-overlapping triangles in a $n$-gon $=n-2$, i.e. 2 less than the number of sides.

Question. 14 What is the sum of all the angles of a pentagon?
(a) $180^{\circ}$
(b) $360^{\circ}$ (c)
(c) $540^{\circ}$ (d) $720^{\circ}$

Solution. (c) We know that, the sum of angles of a polygon is $(n-2) \times 180^{\circ}$, where $n$ is the number of sides of the polygon.
In pentagon, $\mathrm{n}=5$
Sum of the angles $=(n-2) \times 180^{\circ}=(5-2) \times 180^{\circ}$
$=3 \times 180^{\circ}=540^{\circ}$

Question. 15 What is the sum of all angles of a hexagon?
(a) $180^{\circ}$ (b)
(b) $360^{\circ}$ (c)
(c) $540^{\circ}(\mathrm{d}$
(d) $720^{\circ}$

Solution. (d) Sum of all angles of a $n$-gon is $(n-2) \times 180^{\circ}$.
In hexagon, $n=6$, therefore the required sum $=(6-2) \times 180^{\circ}=4 \times 180^{\circ}=720^{\circ}$

Question. 16 If two adjacent angles of a parallelogram are $(5 x-5)$ and $(10 x+35)$, then the ratio of these angles is
(a) $1: 3$
(b) $2: 3$ (
(c) $1: 4$ (d) $1: 2$

Solution.
(a) We know that, adjacent angles of a parallelogram are supplementary, i.e. their sum equals $180^{\circ}$.

$$
\begin{array}{rlrl}
\therefore(5 x-5)+(10 x+35) & =180^{\circ} \\
\Rightarrow & 15 x+30^{\circ} & =180^{\circ} \\
\Rightarrow & 15 x & =150^{\circ} \\
\Rightarrow & x & =10^{\circ}
\end{array}
$$

Thus, the angles are $(5 \times 10-5)$ and $(10 \times 10+35)$, i.e. $45^{\circ}$ and $135^{\circ}$.
Hence, the required ratio is $45^{\circ}: 135^{\circ}$, i.e. $1: 3$.

Question. 17 A quadrilateral whose all sides are equal, opposite angles are equal and the diagonals bisect each other at-right angles is a .
(a) rhombus (b) parallelogram (c) square (d) rectangle

Solution. (a) We know that, in rhombus, all sides are equal, opposite angles are equal and

Question. 18 A quadrilateral whose opposite sides and all the angles are equal is a
(a) rectangle
(b) parallelogram
(c) square
(d) rhombus

Solution. (a) We know that, in a rectangle, opposite sides and all the angles are equal.

Question. 19 A quadrilateral whose all sides, diagonals and angles are equal is a
(a) square (b) trapezium (c) rectangle (d) rhombus

Solution. (a) These are the properties of a square, i.e. in a square, all sides, diagonals and angles are equal.

Question. 20 How many diagonals does a hexagon have?
(a) 9 (b) 8 (c) 2 (d) 6

Solution.
(a) We know that, the number of diagonals in a polygon of $n$ sides is $\frac{n(n-3)}{2}$,

In hexagon, $n=6$
$\therefore$ Number of diagonals in a hexagon $=\frac{6(6-3)}{2}=\frac{6 \times 3}{2}=3 \times 3=9$

Question. 21 If the adjacent sides of a parallelogram are equal, then parallelogram is a (a) rectangle (b) trapezium (c) rhombus (d) square

Solution. (c)We know that, in a parallelogram, opposite sides are equal.
But according to the question, adjacent sides are also equal.
Thus, the parallelogram in which all the sides are equal is known as rhombus.

Question. 22 If the diagonals of a quadrilateral are equal and bisect each other, then the quadrilateral is a
(a) rhombus (b) rectangle (c) square (d) parallelogram

Solution. (b) Since, diagonals are equal and bisect each other, therefore it will be a rectangle.

Question. 23 The sum of all exterior angles of a triangle is
(a) $180^{\circ}$
(b) $360^{\circ}$
(c) $540^{\circ}$ (d)
(d) $720^{\circ}$

Solution. (b) We know that the sum of exterior angles, taken in order of any polygon is $360^{\circ}$ and triangle is also a polygon.
Hence, the sum of all exterior angles of a triangle is $360^{\circ}$.

Question. 24 Which of the following is an equiangular and equilateral polygon?
(a) Square (b) Rectangle (c) Rhombus (d) Right triangle

Solution. (a) In a square, all the sides and all the angles are equal.
Hence, square is an equiangular and equilateral polygon.

Question. 25 Which one has all the properties of a kite and a parallelogram?
(a) Trapezium
(b) Rhombus
(c) Rectangle
(d) Parallelogram

Solution.
(b) In a kite

Two pairs of equal sides.
Diagonals bisect at $90^{\circ}$.
One pair of opposite angles are equal.
In a parallelogram Opposite sides are equal.
Opposite angles are equal.
Diagonals bisect each other.
So, from the given options, all these properties are satisfied by rhombus.

Question. 26 The angles of a quadrilateral are in the ratio $1: 2: 3: 4$. The smallest angle is
(a) $72^{\circ}$ (b)
(b) $144^{\circ}$
(c) $36^{\circ}(\mathrm{d})$
(d) $18^{\circ}$

Solution.
(c) Let the angles of the given quadrilateral be $x^{\circ}, 2 x^{\circ}, 3 x^{\circ}$ and $4 x^{\circ}$.

$$
\begin{aligned}
& \therefore x^{\circ}+2 x^{\circ}+3 x^{\circ}+4 x^{\circ}=360^{\circ} \\
& \text { [ } \because \text { sum of the angles of a quadrilateral is } 360^{\circ} \text { ] } \\
& \Rightarrow \quad 10 x=360^{\circ} \\
& \Rightarrow \quad x=\frac{360^{\circ}}{10}=36^{\circ}
\end{aligned}
$$

Hence, the smallest angle $=36^{\circ}$

Question. 27 In the trapezium ABCD, the measure of $\angle D$ is
(a) $55^{\circ}$ (b) $115^{\circ}$ (c
(c) $135^{\circ}$
(d) $125^{\circ}$


Solution.
(d) We know that, in a trapezium, the angles on either sides of base are supplementary angle.
In trapezium $A B C D$,

$$
\begin{aligned}
\therefore & \angle A+\angle D & =180^{\circ} \\
\Rightarrow & 55^{\circ}+\angle D & =180^{\circ} \\
\Rightarrow & \angle D & =180^{\circ}-55^{\circ} \\
\Rightarrow & \angle D & =125^{\circ}
\end{aligned}
$$

Question. 28 A quadrilateral has three acute angles. If each measures $80^{\circ}$, then the measure of the fourth angle is
(a) $150^{\circ}$
(b) $120^{\circ}$ (c)
(c) $105^{\circ}$
(d) $140^{\circ}$

Solution.
(b) Let the fourth angle be $x$, then $80^{\circ}+80^{\circ}+80^{\circ}+x=360^{\circ}$
[ $\because$ sum of all the angles of quadrilateral is $360^{\circ}$ ]

$$
\begin{array}{rr}
\Rightarrow & 240^{\circ}+x=360^{\circ} \\
\Rightarrow & x=360^{\circ}-240^{\circ} \\
\Rightarrow & x
\end{array}
$$

Question. 29 The number of sides of a regular polygon where each exterior angle has a measure of $45^{\circ}$ is
(a) 8 (b) 10 (c) 4 (d) 6

Solution.
(a) We know that, the sum of exterior angles taken in an order of a polygon is $360^{\circ}$. Since, each exterior angle measures $45^{\circ}$, therefore the number of sides

$$
\begin{aligned}
& =\frac{\text { Sum of exterior angles }}{\text { Measure of an exterior angle }} \\
& =\frac{360^{\circ}}{45^{\circ}}=8
\end{aligned}
$$

Question. 30 In a parallelogram PQRS, if $\angle P=60^{\circ}$, then other three angles are
(a) $45^{\circ}, 135^{\circ}, 120^{\circ}$ (b)
(b) $60^{\circ}, 120^{\circ}, 120^{\circ}$
(c) $60^{\circ}, 135^{\circ}, 135^{\circ}$ (d) $45^{\circ}, 135^{\circ}, 135^{\circ}$

Solution.
(b) Given, $\angle P=60^{\circ}$


Since, in a parallelogram, adjacent angles are supplementary,
$\angle P+\angle Q=180^{\circ} \Rightarrow 60^{\circ}+\angle Q=180^{\circ} \quad \Rightarrow \quad \angle Q=120^{\circ}$
Also, opposite angles are equal in a parallelogram.
Therefore, $\angle R=\angle P=60^{\circ}, \angle S=\angle Q=120^{\circ}$
Hence, other three angles are $60^{\circ}, 120^{\circ}, 120^{\circ}$.

Question. 31 If two adjacent angles of a parallelogram are in the ratio $2: 3$, then the measure of angles are
(a) $72^{\circ}, 108^{\circ}$
(b) $36^{\circ}, 54^{\circ}($
(c) $80^{\circ}, 120^{\circ}(d)$
(d) $96^{\circ}, 144^{\circ}$

Solution. (a) Let the angles be $2 x$ and $3 x$.
Then, $2 x+3 x=180^{\circ}$ [ adjacent angles of a parallelogram are supplementary]
$\Rightarrow 5 x=180^{\circ}$
$\Rightarrow x=36^{\circ}$
Hence, the measures of angles are $2 x=2 \times 36^{\circ}=72^{\circ}$ and $3 x=3 \times 36^{\circ}=108^{\circ}$

Question. 32 IfPQRS is a parallelogram then $\angle P-\angle R$ is equal to
(a) $60^{\circ}$ (b) $90^{\circ}$ (c) $80^{\circ}$ (d) $0^{\circ}$

Solution. (d) Since, in a parallelogram, opposite angles are equal. Therefore, $\angle P-\angle R=0$, as $\angle P$ and $\angle R$ are opposite angles.

Question. 33 The sum of adjacent angles of a parallelogram is
(a) $180^{\circ}$
(b) $120^{\circ}$ (c)
(c) $360^{\circ}$ (d) $90^{\circ}$

Solution. (a) By property of the parallelogram, we know that, the sum of adjacent angles of a parallelogram is $180^{\circ}$.

Question. 34 The angle between the two altitudes of a parallelogram through the same vertex of an obtuse angle of the parallelogram is $30^{\circ}$. The measure of the obtuse angle is
(a) $100^{\circ}$
(b) $150^{\circ}$
(c) $105^{\circ}$
(d) $120^{\circ}$

Solution.
(b) Let $E C$ and $F C$ be altitudes and $\angle E C F=30^{\circ}$.


Let $\angle E D C=x=\angle F B C$
So, $\angle E C D=90-x^{\circ}$ and $\angle B C F=90^{\circ}-x$
So, by property of the parallelogram,

$$
\begin{array}{rlrl}
\angle A D C+\angle D C B & =180^{\circ} \\
\angle A D C+(\angle E C D+\angle E C F+\angle B C F) & =180^{\circ} \\
\Rightarrow \quad x+90^{\circ}-x+30^{\circ}+90^{\circ}-x & =180^{\circ} \\
\Rightarrow \quad-x & =180^{\circ}-210^{\circ}=-30^{\circ} \\
\Rightarrow \quad x & =30^{\circ} \\
\Rightarrow & & &
\end{array}
$$

Question. 35 In the given figure, ABCD and BDCE are parallelograms with common base DC.
If $B C \perp B D$, then $\angle B E C$ is equal to
(a) $60^{\circ}$ (b) $30^{\circ}$ (c) $150^{\circ}$ (d) $120^{\circ}$


Solution.
(a) $\angle B A D=30^{\circ}$
[given]

$$
\begin{aligned}
& \therefore \quad \angle B C D=30^{\circ} \quad[\because \text { opposite angles of a parallelogram are equal }] \\
& \text { In } \triangle C B D \text {, by angle sum property of a triangle, we have } \\
& \angle D B C+\angle B C D+\angle C D B=180^{\circ} \\
& \Rightarrow \quad 90^{\circ}+30^{\circ}+\angle C D B=180^{\circ} \\
& \Rightarrow \\
& \therefore \quad \angle C D B=180^{\circ}-120^{\circ}=60^{\circ} \\
& \therefore \quad \angle B E C=60^{\circ} \quad[\because \text { opposite angles of a parallelogram are equal }]
\end{aligned}
$$

Question. 36 Length of one of the diagonals of a rectangle whose sides are 10 cm and 24 cm is
(a) 25 cm
(b) 20 cm
(c) 26 cm
(d) 3.5 cm

Solution.
(c) In $\triangle B C D$;

$$
\angle B D C=90^{\circ}
$$


$\therefore$ Using Pythagoras theorem,
we have, $B C^{2}=B D^{2}+C D^{2}$

$$
\Rightarrow \quad B C^{2}=10^{2}+24^{2}=100+576
$$

$$
\Rightarrow \quad B C^{2}=676
$$

$$
\Rightarrow \quad B C=\sqrt{676}
$$

$$
\Rightarrow \quad B C=26 \mathrm{~cm}
$$

Question. 37 If the adjacent angles of a parallelogram are equal, then the parallelogram is
a (a) rectangle
(b) trapezium (c) rhombus
(d) None of these

Solution. (a) We know that, the adjacent angles of a parallelogram are supplementary, i.e.
their sum equals $180^{\circ}$ and given that both the angles are same. Therefore, each angle will be of measure $90^{\circ}$.
Hence, the parallelogram is a rectangle.

Question. 38 Which of the following can be four interior angles of a quadrilateral?
(a) $140^{\circ}, 40^{\circ}, 20^{\circ}, 160^{\circ}$
(b) $270^{\circ}, 150^{\circ}, 30^{\circ}, 20^{\circ}$
(c) $40^{\circ}, 70^{\circ}, 90^{\circ}, 60^{\circ}$
(d) $110^{\circ}, 40^{\circ}, 30^{\circ}, 180^{\circ}$

Solution. (a) We know that, the sum of interior angles of a quadrilateral is $360^{\circ}$.
Thus, the angles in option (a) can be four interior angles of a quadrilateral as their sum is $360^{\circ}$.

Question. 39 The sum of angles of a concave quadrilateral is
(a) more than $360^{\circ}$
(b) less than $360^{\circ}$
(c) equal to $360^{\circ}$
(d) twice of $360^{\circ}$

Solution. (c) We know that, the sum of interior angles of any polygon (convex or concave)
having $n$ sides is $(n-2) \times 180^{\circ}$.
.- The sum of angles of a concave quadrilateral is $(4-2) \times 180^{\circ}$, i.e. $360^{\circ}$

Question. 40 Which of the following can never be the measure of exterior angle of a regular
polygon? (a) $22^{\circ}$ (b) $36^{\circ}$ (c) $45^{\circ}$ (d) $30^{\circ}$
Solution. (a) Since, we know that, the sum of measures of exterior angles of a polygon is
$360^{\circ}$, i.e. measure of each exterior angle $=360^{\circ} / n$, where $n$ is the number of sides/angles.
Thus, measure of each exterior angle will always divide $360^{\circ}$ completely.
Hence, $22^{\circ}$ can never be the measure of exterior angle of a regular polygon.

Question. 41 In the figure, BEST is a rhombus, then the value of $\mathrm{y}-\mathrm{x}$ is
(a) $40^{\circ}$
(b) $50^{\circ}$
(c) $20^{\circ}$
(d) $10^{\circ}$


## Solution

(a) Given, a rhombus BEST.
: $T S \| B E$ and $B S$ is transversal.

$$
\begin{array}{lr}
\therefore \angle S B E=\angle T S B=40^{\circ} & \text { [alternate interior angles] } \\
\text { Also, } \angle y=90^{\circ} & \text { [diagonals bisect at } 90^{\circ} \text { ] } \\
\text { In } \triangle T S O, \angle S T O+\angle T S O=\angle S O E & \\
x+40^{\circ}=90^{\circ} \Rightarrow x=50^{\circ} & \text { [exterior angle property of triangle] } \\
\therefore \quad y-x=90^{\circ}-50^{\circ}=40^{\circ} &
\end{array}
$$

Question. 42 The closed curve which is also a polygon, is
(a)

(b)

(c)

(d)


Solution. (a) Figure (a) is polygon as no two line segments intersect each other.

Question. 43 Which of the following is not true for an exterior angle of a regular polygon with n sides?
(a) Each exterior angle $=\frac{360^{\circ}}{n}$
(b) Exterior angle $=180^{\circ}$ - Interior angle
(c) $n=\frac{360^{\circ}}{\text { Exterior angle }}$
(d) Each exterior angle $=\frac{(n-2) \times 180^{\circ}}{n}$

Solution. (d) We know that, (a) and (b) are the formulae to find the measure of each exterior angle, when number of sides and measure of an interior angle respectively are given and (c) is the formula to find number of sides of polygon when exterior angle is given.
Hence, the formula given in option (d) is not true for an exterior angle of a regular polygon with n sides.

Question. 44 PQRS is a square. PR and SQ intersect at 0 . Then, $\angle P O Q$ is a (a) right angle (b) straight angle (c) reflex angle (d) complete angle

## Solution.

(a)


We know that, the diagonals of a square intersect each other at right angle.
Hence, $\angle P O Q=90^{\circ}$, i.e. right angle.

Question. 45 Two adjacent angles of a parallelogram are in the ratio $1: 5$. Then, all the angles of the parallelogram are
(a) $30^{\circ}, 150^{\circ}, 30^{\circ}, 150^{\circ}$
(b) $85^{\circ}, 95^{\circ}, 85^{\circ}, 95^{\circ}$.
(c) $45^{\circ}, 135^{\circ}, 45^{\circ}, 135^{\circ}$ (d) $30^{\circ}, 180^{\circ}, 30^{\circ}, 180^{\circ}$

Solution. (a) Let the adjacent angles of a parallelogram be $x$ and $5 x$, respectively.
Then, $x+5 x=180^{\circ}\left[\right.$ adjacent angles of a parallelogram are supplementary] $=>6 x=180^{\circ}$
$\Rightarrow>=30^{\circ}$
The adjacent angles are $30^{\circ}$ and $150^{\circ}$.
Hence, the angles are $30^{\circ}, 150^{\circ}, 30^{\circ}, 150^{\circ}$

Question. 46 A parallelogram PQRS is constructed with sides $Q R=6 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}$ and $\angle P Q R=90^{\circ}$. Then, PQRS is a
(a) square
(b) rectangle
(c) rhombus
(d) trapezium

Solution. (b) We know that, if in a parallelogram one angle is of $90^{\circ}$, then all angles will be of $90^{\circ}$ and a parallelogram with all angles equal to $90^{\circ}$ is called a rectangle.

Question. 47 The angles $P, Q, R$ and 5 of a quadrilateral are in the ratio $1: 3: 7: 9$. Then, PQRS is a
(a) parallelogram (b) trapezium with $P Q \backslash \backslash R S$
(c) trapezium with QR $\backslash \backslash P S$ (d) kite

Solution.
(b)


Let the angles be $x, 3 x, 7 x$ and $9 x$, then

$$
\begin{aligned}
& \left.x+3 x+7 x+9 x=360^{\circ} \quad \quad \quad \because \quad \text { sum of angles in any quadrilateral is } 360^{\circ}\right] \\
& \Rightarrow \quad x=360^{\circ} \\
& \Rightarrow \quad x=\frac{360^{\circ}}{20} \\
& \Rightarrow \quad x=18^{\circ} \\
& \text { Then, the angles } P, Q, R \text { and } S \text { are } 18^{\circ}, 54^{\circ}, 126^{\circ} \text { and } 162^{\circ} \text {, respectively. } \\
& \text { Since, } \angle P+\angle S=18^{\circ}+162^{\circ}=18 C^{\circ} \text { and } \angle Q+\angle R=54^{\circ}+126^{\circ}=180^{\circ} \\
& \therefore \text { The quadrilateral } P Q R S \text { is a trapezium with } P Q \| R S .
\end{aligned}
$$

Question. 48 PQRS is a trapezium in which $\mathrm{PQ} \| \mathrm{SR}$ and $\mathrm{ZP}=130^{\circ}, \angle Q=110^{\circ}$. Then, $\angle R$ is equal to.
(a) $70^{\circ}$ (b)
(b) $50^{\circ}$ (c) ) $65^{\circ}$
(d) $55^{\circ}$

Solution.
(a) Since, $P Q R S$ is a trapezium and $P Q \| S R$.

$$
\begin{aligned}
& \therefore \angle Q+\angle R=180^{\circ} \quad[\because \text { angles between the pair of parallel sides are supplementary }] \\
& \Rightarrow \quad \angle R=180^{\circ}-110^{\circ}=70^{\circ}
\end{aligned}
$$

Question. 49 The number of sides of a regular polygon whose each interior angle is of $135^{\circ}$ is (a) 6 (b) 7 (c) 8 (d) 9
Solution.
(c) We know that, the measures of each exterior angle of a polygon having $n$ sides is , given by $\frac{360^{\circ}}{n}$.
$\therefore$ The number of sides, $n=\frac{360^{\circ}}{\text { Exterior angle }}=\frac{360^{\circ}}{180^{\circ}-135^{\circ}}$
$\left[\because\right.$ exterior angle + interior angle $=180^{\circ}$ ]

$$
=\frac{360^{\circ}}{45^{\circ}}=8
$$

Question. 50 If a diagonal of a quadrilateral bisects both the angles, then it is a
(a) kite (b) parallelogram
(c) rhombus
(d) rectangle

Solution. (c) If a diagonal of a quadrilateral bisects both the angles, then it is a rhombus.

Question. 51 To construct a unique parallelogram, the minimum number of measurements required is (a) 2 (b) 3 (c) 4 (d) 5
Solution. (b) We know that, in a parallelogram, opposite sides are equal and parallel. Also, opposite angles are equal.
So, to construct a parallelogram uniquely, we require the measure of any two non-parallel sides and the measure of an angle.
Hence, the minimum number of measurements required to draw a unique parallelogram is 3 .

Question. 52 To construct a unique rectangle, the minimum number of measurements required is (a) 4 (b) 3 (0 2 (d) 1
Solution. (c) Since, in a rectangle, opposite sides are equal and parallel, so we need the measurement of only two adjacent sides, i.e. length and breadth. Also, each angle measures $90^{\circ}$.

Hence, we require only two measurements to construct a unique rectangle.

Fill in the Blanks
In questions 53 to 91 , fill in the blanks to make the statements true.
Question. 53 In quadrilateral HOPE, the pairs of opposite sides are-----.
Solution.


## $E H, P O$ and $H O, E P$ are pairs of opposite sides.

Question. 54 In quadrilateral ROPE, the pairs of adjacent angles are------. Solution.


The pairs of adjacent angles are $\angle R, \angle O ; \angle O, \angle P ; \angle P, \angle E ; \angle E, \angle R$

Question. 55 In quadrilateral WXYZ, the pairs of opposite angles are------
Solution.


The pairs of opposite angles are $\angle W, \angle Y ; \angle X, \angle Z$.

Question. 56 The diagonals of the quadrilateral DEFG are----and------.
Solution.


The diagonals are GE and FD.

Question. 57 The sum of all---- of a quadrilateral is $360^{\circ}$.
Solution. angles
We know that, the sum of all angles of a quadrilateral is $360^{\circ}$.

Question. 58 The measure of each exterior angle of a regular pentagon is----- .
Solution.

[ $\because$ in pentagon, number of sides, $n=5$ ].

Question. 59 Sum of the angles of a hexagon is--------
Solution.
$720^{\circ}$
Since, the sum of angles of an $n$-gon $=(n-2) \times 180^{\circ}$
$\therefore$ Sum of the angles of a hexagon $=(6-2) \times 180^{\circ}=4 \times 180^{\circ}=720^{\circ}$
$[\because$ in hexagon, number of sides, $n=6$ ]

Question. 60 The measure of each exterior angle of a regular polygon of 18 sides is---. Solution.
$20^{\circ}$
We know that, measure of each exterior angle $=\frac{360^{\circ}}{\text { Number of sides }}=\frac{360^{\circ}}{18 .}=20^{\circ}$

Question. 61 The number of sides of a regular polygon, where each exterior angle has a measure of $36^{\circ}$, is------
Solution.
$10^{\circ}$
We know that, the sum of exterior angles of a regular polygon is $360^{\circ}$.
Further, since each exterior angle is of $36^{\circ}$, therefore number of sides $=\frac{360^{\circ}}{\text { Exterior angle }}$

$$
=\frac{360^{\circ}}{36^{\circ}}=10^{\circ}
$$

Question. 62
$\sum \sum \begin{aligned} & \text { is a closed curve entirely made up of line segments. The another } \\ & \text { name for this shape is }\end{aligned}$
Solution. concave polygon
As one interior angle is of greater than $180^{\circ}$.

Question. 63 A quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure is------.
Solution. kite
By the property of a kite, we know that, it has two opposite angles of equal measure.

Question. 64 The measure of each angle of a regular pentagon is-----.
Solution.

We know that, the sum of interior angles of a polygon $=(n-2) \times 180^{\circ}$
$=(5-2) \times 180^{\circ}=540^{\circ}$
Since, it is a regular pentagon. $\quad[\because$ in pentagon, number of sides, $n=5$ ]
$\therefore$ Measure of each interior angle $=\frac{\text { Sum of interior angles }}{\text { Number of sides }}=\frac{540^{\circ}}{5}=108^{\circ}$

Question. 65 The name of three-sided regular polygon is
Solution. equilateral triangle, as polygon is regular, i.e. length of each side is same.

Question. 66 The number of diagonals in a hexagon is------
Solution.
9. We know that, number of diagonals of a $n$-gon $=\frac{n(n-3)}{2}$

Here, $n=6$, therefore the number of diagonals $=\frac{6(6-3)}{2}=\frac{6 \times 3}{2}=9$

Question. 67 A polygon is a simple closed curve made up of only - ---.
Solution. line segments,
Since a simple closed curve made up of only line segments is called a polygon.

Question. 68 A regular polygon is a polygon whose all sides are equal and all---are equal.
Solution. angles
In a regular polygon, all sides are equal and all angles are equal.

Question. 69 The sum of interior angles of a polygon of $n$ sides is---- right angles.
Solution.
(2n-4)
By the formula, sum of interior angles of a polygon of $n$ sides $=(n-2) \times 180^{\circ}$ $=(2 n-4) \times 90^{\circ}$

Question. 70 The sum of all exterior angles of a polygon is-----
Solution. $360^{\circ}$
As the sum of all exterior angles of a polygon is $360^{\circ}$.

Question. 71 -----is a regular quadrilateral.
Solution. Square
Since in square, all the sides are of equal length and all angles are equal.

Question. 72 A quadrilateral in which a pair of opposite sides is parallel is-----.
Solution. trapezium
We know that, in a trapezium, one pair of sides is parallel.

Question. 73 If all sides of a quadrilateral are equal, it is a-----.
Solution. rhombus or square
As in both the quadrilaterals all sides are of equal length.

Question. 74 In a rhombus, diagonals intersect at----- angles.
Solution. right
The diagonals of a rhombus intersect at right angles.

Question. 75 ---measurements can determine a quadrilateral uniquely.
Solution. 5
To construct a unique quadrilateral, we require 5 measurements, i.e. four sides and one angle or three sides and two included angles or two adjacent sides and three angles are given.

Question. 76 A quadrilateral can be constructed uniquely, if its three sides and----angles are given.
Solution. two included
We cap determine a quadrilateral uniquely, if three sides and two included angles are given.

Question. 77 A rhombus is a parallelogram in which----sides are equal.
Solution. all
As length of each side is same in a rhombus.

Question. 78 The measure of--- angle of concave quadrilateral is more than $180^{\circ}$.
Solution. one
Concave polygon is a polygon in which at least one interior angle is more than $180^{\circ}$.

Question. 79 A diagonal of a quadrilateral is a line segment that joins two--- vertices of the quadrilateral.
Solution. opposite
Since the line segment connecting two opposite vertices is called diagonal.

Question. 80 The number of sides in a regular polygon having measure of an exterior angle as $72^{\circ}$ is----- .
Solution. 5
We know that,the sum of exterior angles of any polygon is $360^{\circ}$.
The number of sides in a regular polygon $=\frac{360^{\circ}}{\text { Exterior angle }}$
$\therefore$ The number of sides in given polygon $=\frac{360^{\circ}}{72^{\circ}}=5$

Question. 81 If the diagonals of a quadrilateral bisect each other, it is a----.
Solution. parallelogram
Since in a parallelogram, the diagonals bisect each other.

Question. 82 The adjacent sides of a parallelogram are 5 cm and 9 cm . Its perimeter is--Solution. 28 cm
Perimeter of a parallelogram $=2$ (Sum of lengths of adjacent sides)
$=2(5+9)=2 \times 14=28 \mathrm{~cm}$

Question. 83 A nonagon has----sides.
Solution. 9
Nonagon is a polygon which has 9 sides.

Question. 84 Diagonals of a rectangle are----.
Solution. equal
We know that, in a rectangle, both the diagonals are of equal length.

Question. 85 A polygon having 10 sides is known as-----
Solution. decagon
A polygon with 10 sides is called decagon.

Question. 86 A rectangle whose adjacent sides are equal becomes a ----.
Solution. square
If in a rectangle, adjacent sides are equal, then it is called a square.

Question. 87 If one diagonal of a rectangle is 6 cm long, length of the other diagonal is--Solution. 6 cm

Since both the diagonals of a rectangle are equal. Therefore, length of other diagonal is also 6 cm.

Question. 88 Adjacent angles of a parallelogram are-----
Solution. supplementary
By property of a parallelogram, we know that, the adjacent angles of a parallelogram are supplementary.

Question. 89 If only one diagonal of a quadrilateral bisects the other, then the quadrilateral is known as----.
Solution. kite
This is a property of kite, i.e. only one diagonal bisects the other.

Question. 90 In trapezium ABCD with $\mathrm{AB} \| \mathrm{CD}$, if $\angle A=100^{\circ}$, then $\angle D=----$.
Solution.
$80^{\circ}$
In a trapezium, we know that, the angles on either side of the base are supplementary. So, in trapezium $A B C D$, given $A B \| C D$

$$
\therefore \quad \angle A+\angle D=180^{\circ}
$$

$\Rightarrow \quad 100^{\circ}+\angle D=180^{\circ}$
$\Rightarrow \quad \angle D=180^{\circ}-100^{\circ}$
$\therefore \quad \angle D=80^{\circ}$

Question. 91 The polygon in which sum of all exterior angles is equal to the sum of interior angles is called----.
Solution. quadrilateral
We know that, the sum of exterior angles of a polygon is $360^{\circ}$ and in a quadrilateral, sum of interior angles is also $360^{\circ}$. Therefore, a quadrilateral is a polygon in which the sum of both interior and exterior angles are equal.

## True/False

In questions 92 to 131, state whether the statements are True or False.
Question. 92 All angles of a trapezium are equal.
Solution. False
As all angles of a trapezium are not equal.

Question. 93 All squares are rectangles.
Solution. True
Since squares possess all the properties of rectangles. Therefore, we can say that, all squares are rectangles but vice-versa is not true.

Question. 94 All kites are squares.
Solution. False
As kites do not satisfy all the properties of a square.
e.g. In square, all the angles are of $90^{\circ}$ but in kite, it is not the case.

Question. 95 All rectangles are parallelograms.
Solution. True
Since rectangles satisfy all "the"properties" of parallelograms. Therefore, we can say that, all rectangles are parallelograms but vice-versa is not true.

Question. 96 All rhombuses are square.
Solution. False
As in a rhombus, each angle is not a right angle, so rhombuses are not squares.

Question. 97 Sum of all the angles of a quadrilateral is $180^{\circ}$.
Solution. False
Since sum of all the angles of a quadrilateral is $360^{\circ}$.

Question. 98 A quadrilateral has two diagonals.
Solution. True
A quadrilateral has two diagonals.

Question. 99 Triangle is a polygon whose sum of exterior angles is double the sum of interior angles.
Solution. True
As the sum of interior angles of a triangle is $180^{\circ}$ and the sum of exterior angles is $360^{\circ}$, i.e. double the sum of interior angles.

Question. 100


Solution. False
Because it is not a simple closed curve as it intersects with itself more than once.

Question. 101 A kite is not a convex quadrilateral.
Solution. False
A kite is a convex quadrilateral as the line segment joining any two opposite vertices inside it, lies completely inside it.

Question. 102 The sum of interior angles and the sum of exterior angles taken in an order are equal in case of quadrilaterals only.
Solution. True
Since the sum of interior angles as well as of exterior angles of a quadrilateral are $360^{\circ}$.

Question. 103 If the sum of interior angles is double the sum of exterior angles taken in an order of a polygon, then it is a hexagon.
Solution. True
Since the sum of exterior angles of a hexagon is $360^{\circ}$ and the sum of interior angles of a hexagon is $720^{\circ}$, i.e. double the sum of exterior angles.

Question. 104 A polygon is regular, if all of its sides are equal.
Solution. False
By definition of a regular polygon, we know that, a polygon is regular, if all sides and all angles are equal.

Question. 105 Rectangle is a regular quadrilateral.
Solution. False
As its all sides are not equal.

Question. 106 If diagonals of a quadrilateral are equal, it must be a rectangle.
Solution. True
If diagonals are equal, then it is definitely a rectangle. -

Question. 107 If opposite angles of a quadrilateral are equal, it must be a parallelogram.
Solution. True
If opposite angles are equal, it has to be a parallelogram.

Question. 108 The interior angles of a triangle are in the ratio 1:2:3, then the ratio of its
exterior angles is $3: 2: 1$.
Solution.
False
Given, ratio of interior angles $=1: 2: 3$
Let the interior angles be $x, 2 x$ and $3 x$.
So, $x+2 x+3 x=180^{\circ}$
[angle sum property of triangle]
$\Rightarrow \quad 6 x=180^{\circ}$
$\Rightarrow \quad x=\frac{180^{\circ}}{6}=30^{\circ}$
$\therefore$ The interior angles are $30^{\circ}, 60^{\circ}$ and $90^{\circ}$.
Now, the exterior angles will be $\left(180^{\circ}-30^{\circ}\right),\left(180^{\circ}-60^{\circ}\right)$ and $\left(180^{\circ}-90^{\circ}\right)$,
i.e. $150^{\circ}, 120^{\circ}$ and $90^{\circ}$.

The ratio of exterior angles $=150^{\circ}: 120^{\circ}: 90^{\circ}=15: 12: 9=5: 4: 3$

Question. 109
is a concave pentagon.
Solution. False
As it has 6 sides, therefore it is a concave hexagon.

Question. 110 Diagonals of a rhombus are equal and perpendicular to each other.
Solution. False
As diagonals of a rhombus are perpendicular to each other but not equal.

Question. 111 Diagonals of a rectangle are equal.
Solution. True
The diagonals of a rectangle are equal.

Question. 112 Diagonals of rectangle bisect each other at right angles.
Solution. False
Diagonals of a rectangle does not bisect each other.

Question. 113 Every kite is a parallelogram.
Solution. False
Kite is not a parallelogram as its opposite sides are not equal and parallel.

Question. 114 Every trapezium is a parallelogram.
Solution. False
Since in a trapezium, only one pair of sides is parallel.

Question. 115 Every parallelogram is a rectangle.
Solution. False
As in a parallelogram, all angles are not right angles, while in a rectangle, all angles are equal and are right angles.

Question. 116 Every trapezium is a rectangle.
Solution. False
Since in a rectangle, opposite sides are equal and parallel but in a trapezium, it is not so.

Question. 117 Every rectangle is a trapezium.
Solution. True
As a rectangle satisfies all the properties of a trapezium. So, we can say that, every rectangle is a trapezium but vice-versa is not true.

Question. 118 Every square is a rhombus.
Solution. True
As a square possesses all the properties of a rhombus. So, we can say that, every square is a rhombus but vice-versa is not true.

Question. 119 Every square is a parallelogram.
Solution. True
Every square is also a parallelogram as it has all the properties of a parallelogram but viceversa is not true.

Question. 120 Every square is a trapezium.
Solution. True
As a square has all the properties of a trapezium. So, we can say that, every square is a trapezium but vice-versa is not true.

Question. 121 Every rhombus is a trapezium.
Solution. True
Since a rhombus satisfies all the properties of a trapezium. So, we can say that, every
rhombus is a trapezium but vice-versa is not true.

Question. 122 A quadrilateral can be drawn if only measures of four sides are given.
Solution. False
As we require at least five measurements to determine a quadrilateral uniquely.

Question. 123 A quadrilateral can have all four angles as obtuse.
Solution. False
If all angles will be obtuse, then their sum will exceed $360^{\circ}$. This is not possible in case of a quadrilateral.

Question. 124 A quadrilateral can be drawn, if all four sides and one diagonal is known.
Solution. True
A quadrilateral can be constructed uniquely, if four sides and one diagonal is known.

Question. 125 A quadrilateral can be drawn, when all the four angles and one side is given.
Solution. False
We cannot draw a unique-quadrilateral, if four angles and one side is known.

Question. 126 A quadrilateral can be drawn, if all four sides and one angle is known.
Solution. True
A quadrilateral can be drawn, if all four sides and one angle is known.

Question. 127 A quadrilateral can be drawn, if three sides and two diagonals are given.
Solution. True
A quadrilateral can be drawn, if three sides and two diagonals are given.

Question. 128 If diagonals of a quadrilateral bisect each other, it must be a parallelogram.
Solution. True
It is the property of a parallelogram.

Question. 129 A quadrilateral can be constructed uniquely, if three angles and any two included sides are given.
Solution. True
We can construct a unique quadrilateral with given three angles given and two included sides.

Question. 130 A parallelogram can be constructed uniquely, if both diagonals and the angle between them is given.
Solution. True
We can draw a unique parallelogram, if both diagonals and the angle between them is given.

Question. 131 A rhombus can be constructed uniquely, if both diagonals are given.
Solution. True
A rhombus can be constructed uniquely, if both diagonals are given.

Question. 132 The diagonals of a rhombus are 8 cm and 15 cm . Find its side.
Solution.
Given, $A C=15 \mathrm{~cm}, B D=8 \mathrm{~cm}$


Since, the diagonals of a rhombus bisect each other at $90^{\circ}$, therefore in the $\triangle A O B$, we have

$$
\begin{array}{rlrl} 
& A B^{2}=O A^{2}+O B^{2} \\
\Rightarrow & A B^{2} & =\left(\frac{15}{2}\right)^{2}+\left(\frac{8}{2}\right)^{2}=(7.5)^{2}+(4)^{2}=56.25+16 \\
\Rightarrow & A B^{2} & =72.25 \\
\Rightarrow & A B & =\sqrt{72.25} \\
\Rightarrow & A B & =8.5 \mathrm{~cm}
\end{array}
$$

Since it is a rhombus, the length of each side is 8.5 cm .

Question. 133 Two adjacent angles of a parallelogram are in the ratio $1: 3$. Find its angles.
Solution. Let the adjacent angles of a parallelogram be $x$ and 8 c .
Then, we have $x+(3 x)=180^{\circ}$ [adjacent angles of parallelogram are supplementary]
$\Rightarrow 4 x=180^{\circ}$
$\Rightarrow>=45^{\circ}$
Thus, the angles are $45^{\circ}, 135^{\circ}$.
Hence, the angles are $45^{\circ}, 135,45^{\circ}, 135^{\circ}$. [ opposite angles in a parallelogram are equal]

Question. 134 Of the four quadrilaterals - square, rectangle, rhombus and trapezium-one is somewhat different from the others because of its design. Find it and give justification.
Solution. In square, rectangle and rhombus, opposite sides are parallel and equal. Also, opposite angles are equal, i.e. they all are parallelograms.
But in trapezium, there is only one pair of parallel sides, i.e. it is not a parallelogram. Therefore, trapezium has different design.

Question. 135 In a rectangle $\mathrm{ABCD}, \mathrm{AB}=25 \mathrm{~cm}$ and $\mathrm{BC}=15 \mathrm{~cm}$. In what ratio, does the bisector of $\angle C$ divide AB ?
Solution.
Given, $A B=25 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$
Now, in rectangle $A B C D$,

$C O$ is the bisector of $\angle C$ and it divides $A B$.

$$
\therefore \quad \angle O C B=\angle O C D=45^{\circ}
$$

$\therefore \quad \angle O C B=\angle O C D=45^{\circ}$
In $\triangle O C B$, we have
$\angle C B O+\angle O C B+\angle C O B=180^{\circ}$
[angle sum property of triangle]

$$
\begin{aligned}
90^{\circ}+45^{\circ}+\angle C O B & =180^{\circ} \\
\angle C O B & =180^{\circ}-90^{\circ}+45^{\circ} \\
\angle C O B & =180^{\circ}-135^{\circ}=45^{\circ}
\end{aligned}
$$

Now, in $\triangle O C B$

$$
\angle O C B=\angle C O B
$$

Then, $\quad O B=B C$
$\Rightarrow \quad O B=15 \mathrm{~cm}$
$C O$ divides $A B$ in the ratio $A O: O B$.
Let $A O$ be $x$, then

$$
O B=A B-x=25-x
$$

Hence, $\quad A O: O B=x: 25-x$
$\Rightarrow 10: 15 \Rightarrow 2: 3$

Question. 136 PQRS is a rectangle. The perpendicular ST from S on PR divides $\angle S$ in the ratio $2: 3$. Find $\angle T P Q$.

Solution.
Given, $S T \perp P R$ and $S T$ divides $\angle S$ in the ratio $2: 3$.
So, sum of ratio $=2+3=5$


Now, $\angle$ TSP $=\frac{2}{5} \times 90^{\circ}=36^{\circ}, \angle T S A=\frac{3}{5} \times 90^{\circ}=54^{\circ}$
Also, by the angle sum property of a triangle,

$$
\begin{aligned}
\angle T P S & =180^{\circ}-(\angle S T P+\angle T S P) \\
& =180^{\circ}-\left(90^{\circ}+36^{\circ}\right)=54^{\circ}
\end{aligned}
$$

We know that, $\angle S P Q=90^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & \angle T P S+\angle T P Q=90^{\circ} \\
\Rightarrow & 54^{\circ}+\angle T P Q=90^{\circ} \\
\Rightarrow & \angle T P Q=90^{\circ}-54^{\circ}=36^{\circ}
\end{array}
$$

Question. 137 A photo frame is in the shape of a quadrilateral, with one diagonal longer than the other. Is it a rectangle? Why or why not?
Solution. No, it cannot be a rectangle, as in rectangle, both the diagonals are of equal lengths.

Question. 138 The adjacent angles of a parallelogram are $(2 x-4)^{\circ}$ and $(3 x-1)^{\circ}$. Find the measures of all angles of the parallelogram.
Solution. Since, the adjacent angles of a parallelogram are supplementary.
$(2 x-4)^{\circ}+\left(3^{\star}-1\right)^{\circ}=180^{\circ}$
$\Rightarrow \quad 5 x-5^{\circ}=180^{\circ}$
$\Rightarrow \quad 5 x=185^{\circ}$
$\Rightarrow \quad x=\frac{185^{\circ}}{5} \Rightarrow x=37^{\circ}$
Thus, the adjacent angles are

$$
2 x-4=2 \times 37^{\circ}-4=74-4=70^{\circ}
$$

and $3 x-1=3 \times 37^{\circ}-1=111-1=110^{\circ}$
Hence, the angles are $70^{\circ}, 110^{\circ}, 70^{\circ}, 110^{\circ}$

Question. 139 The point of intersection of diagonals of a quadrilateral divides one diagonal in the ratio 1:2. Can it be a parallelogram? Why or why not?
Solution. No, it can never be a parallelogram, as the diagonals of a parallelogram intersect each other in the ratio $1: 1$.

Question. 140 The ratio between exterior angle and interior angle of a regular polygon is 1 :
5. Find the number of sides of the polygon.

Solution.
Let the exterior angle and interior angle be $x$ and $5 x$, respectively.
Then, $x+5 x=180^{\circ}$
[ $\because$ exterior angle and corresponding interior angle are supplementary]
$\Rightarrow \quad 6 x=180^{\circ}$
$\Rightarrow \quad x=\frac{180^{\circ}}{6}$
$\Rightarrow \quad x=30^{\circ}$
$\therefore$ The number of sides $=\frac{360^{\circ}}{\text { Exterior angle }}$

$$
=\frac{360^{\circ}}{30^{\circ}}=12
$$

Question. 141 Two sticks each of length 5 cm are crossing each other such that they bisect each other. What shape is formed by joining their end points? Give reason.
Solution. Sticks can be taken as the diagonals of a quadrilateral.
Now, since they are bisecting each other, therefore the shape formed by joining their end points will be a parallelogram.
Hence, it may be a rectangle or a square depending on the angle between the sticks.

Question. 142 Two sticks each of length 7 cm are crossing each other such that they bisect each other at right angles. What shape is formed by joining their end points? Give reason. Solution. Sticks can be treated as the diagonals of a quadrilateral.
Now, since the diagonals (sticks) are bisecting each other at right angles, therefore the shape formed by joining their end points will be a rhombus.

Question. 143 A playground in the town is in the form of a kite. The perimeter is 106 m . If one of its sides is 23 m , what are the lengths of other three sides?
Solution. Let the length of other non-consecutive side be xcm .
Then, we have, perimeter of playground $=23+23+x+x$
=> $106=2(23+x)$
$\Rightarrow>46+2 x=1062 x=106-46$
$\Rightarrow 2 x=60$
=>x $=30 \mathrm{~m}$
Hence, the lengths of other three sides are $23 \mathrm{~m}, 30 \mathrm{~m}$ and 30 m . As a kite has two pairs of equal consecutive sides.

Question. 144 In rectangle READ , find $\angle E A R, \angle R A D$ and $\angle R O D$.


Solution.
Given, a rectangle $R E A D$, in which $\angle R O E=60^{\circ}$
$\therefore \quad \angle E O A=180^{\circ}-60^{\circ}=120^{\circ}$
[linear pair]
Now, in $\triangle E O A, \angle O E A=\angle O A E=30^{\circ} \quad[\because O E=O A$ and equal sides make equal angles $]$
$\therefore \quad \angle E A R=30^{\circ}, \angle R A D=90^{\circ}-\angle E A R=60^{\circ}$ and $\angle R O D=\angle E O A=120^{\circ}$

Question. 145 In rectangle PAIR, find $\angle A R I$, ZRMI and $\angle P M A$.


Solution.

$$
\begin{array}{lll}
\text { Given, } & \angle R A I=35^{\circ} \\
\therefore & \angle P R A=35^{\circ} & \\
\Rightarrow & \angle A R I=90^{\circ}-\angle P R A=90^{\circ}-35^{\circ}=55^{\circ} & \text { [PR\|AI and } A R \text { is transversal] } \\
\because & A M & =I M, \angle M I A=\angle M A I=35^{\circ} \\
\text { In } \triangle A M I, & \angle R M I=\angle M A I+\angle M I A=70^{\circ} & \\
\text { Also, } & \angle R M I=\angle P M A & \text { [exterior angle] } \\
\Rightarrow & \angle P M A=70^{\circ} & \text { [verticatly opposite angles] }
\end{array}
$$

Question. 146 In parallelogram ABCD , find $\angle B, \angle C$ and $\angle D$.


Solution.
In a parallelogram, the opposite angles are equal, therefore $\angle C=\angle A=80^{\circ}$
Also, adjacent angles are supplementary.

$$
\begin{array}{rlrl}
\therefore & \angle A+\angle B & =180^{\circ} \\
& 80^{\circ}+\angle B & =180^{\circ} \\
& \angle B & =180^{\circ}-80^{\circ} \Rightarrow \angle B=100^{\circ} \\
& \text { Now, } & \angle B & =\angle D \\
& \therefore & \angle D & =100^{\circ}
\end{array}
$$

Question. 147 In parallelogram PQRS, 0 is the mid-point of SQ . Find $\angle S, \angle R, \mathrm{PQ}, \mathrm{QR}$ and diagonal PR.


Solution.

$$
\begin{array}{lrl}
\text { Given, } \angle R Q Y & =60^{\circ} \\
\therefore & \angle R Q P & =120^{\circ} \\
\therefore & \angle S & =120^{\circ}
\end{array} \quad \text { [linear pair] } \quad[\because \text { opposite angles are equal in a parallelogram] } \quad l
$$

$$
\text { By the angle sum property of a quadrilateral, } \angle P+\angle R+\angle S+\angle Q=360^{\circ}
$$

$$
\begin{aligned}
& \Rightarrow \quad \angle P+\angle R+120^{\circ}+120^{\circ}=360^{\circ} \\
& \Rightarrow \quad \angle P+\angle R=120^{\circ} \\
& \Rightarrow \quad 2 \angle P=120^{\circ} \\
& \Rightarrow \quad \angle P=60^{\circ} \quad[\because \text { opposite angles are equal in parallelogram] } \\
& \Rightarrow \text {. } \quad \angle P=\angle R=60^{\circ} \\
& \text { Also, } \quad S \text { i }=15 \mathrm{~cm} \\
& \therefore \quad P Q=15 \mathrm{~cm} \text { [ } \because \text { opposite sides of a parallelogram are equal] } \\
& \text { And } \quad P S=11 \mathrm{~cm} \\
& \therefore \quad Q R=11 \mathrm{~cm}[\because \text { opposite sides of a parallelogram are equal }] \\
& \text { and } P R=2 \times P O=2 \times 6=12 \quad \text { [ } \because \text { diagonals of a parallelogram bisect each other] }
\end{aligned}
$$



Solution.
Given, $\angle B A M=70^{\circ}$
We know that, in rhombus, diagonais bisect each other at right angles.
$\therefore \angle B O M=\angle B O E=\angle A O M=\angle A O E=90^{\circ}$
Now, in $\triangle A O M$,

```
\(\angle A O M+\angle A M O+\angle O A M=180^{\circ} \quad\) [angle sum property of triangle]
\(\Rightarrow \quad 90^{\circ}+\angle A M O+70^{\circ}=180^{\circ}\)
\(\Rightarrow \quad \angle A M O=180^{\circ}-90^{\circ}-70^{\circ}\)
\(\Rightarrow \quad \angle A M O=20^{\circ}\)
```

Also, $A M=B M=B E=E A$

## In $\triangle A M E$, we have,

$$
A M=E A
$$

$\therefore \angle A M E=\angle A E M=20^{\circ} \quad[\because$ equal sides make equal angles]

Question. 149 In parallelogram FIST, find $\angle S F T, \angle O S T$ and $\angle S T O$.


Solution.

$$
\begin{aligned}
& \text { Given, } \angle F I S=60^{\circ} \\
& \text { Now, } \quad \angle F T S=\angle F I S=60^{\circ} \quad \text { [:opposite angles of a parallelogram are equal] } \\
& \text { Now, } F T \| I S \text { and } T I \text { is a transversal, therefore } \angle F T O=\angle S I O=25^{\circ} \quad \text { [alternate angles] } \\
& \begin{aligned}
\angle S T O & =\angle F T S-\angle F T O=60^{\circ}-25^{\circ}=35^{\circ} \\
\therefore \quad \angle F O T+\angle S O T & =180^{\circ} \quad \text { [linear pair] }
\end{aligned} \\
& \Rightarrow \quad 110^{\circ}+\angle S O T=180^{\circ} \\
& \Rightarrow \quad \angle S O T=180^{\circ}-110^{\circ}=70^{\circ} \\
& \text { In } \triangle T O S \quad \angle T S O+\angle O T S+\angle T O S=180^{\circ} \quad \text { [angle sum property of triangle] } \\
& \therefore \quad \angle O S T=180^{\circ}-\left(70^{\circ}+35^{\circ}\right)=75^{\circ} \\
& \text { In } \triangle F O T, \quad \angle F O T+\angle F T O+\angle O F T=180^{\circ} \\
& \Rightarrow \quad \angle S F T=\angle O F T_{n}=180^{\circ}-(\angle F O T+\angle F T O)=180^{\circ}-\left(110^{\circ}+25^{\circ}\right)=45^{\circ}
\end{aligned}
$$

Question. 150 In the given parallelogram YOUR, $\angle R U O=120^{\circ}$ and 0 Y is extended to points, such that $\angle S R Y=50^{\circ}$. Find $\angle Y S R$.


Solution.

Given, $\angle R U O=120^{\circ}$ and $\angle S R Y=50^{\circ}$
$\angle R Y O=\angle R U O=120^{\circ} \quad[\because$ opposite angles of a parallelogram]
Now, $\quad \angle S Y R=180^{\circ}-\angle R Y O$
[linear pair]

$$
=180^{\circ}-120^{\circ}=60^{\circ}
$$

In $\triangle S R Y$,
By the angle sum property of a triangle, $\angle S R Y+\angle R Y S+\angle Y S R=180^{\circ}$

$$
\begin{aligned}
\Rightarrow & 50^{\circ}+60^{\circ}+\angle Y S R & =180^{\circ} \\
\Rightarrow & \angle Y S R & =180^{\circ}-\left(50^{\circ}+60^{\circ}\right)=70^{\circ}
\end{aligned}
$$

Question. 151 In kite WEAR, $\angle W E A=70^{\circ}$ and $\angle A R W=80^{\circ}$. Find the remaining two angles.


Solution.
Given, in a kite WEAR, $\angle W E A=70^{\circ}, \angle A R W=80^{\circ}$
Now, by the interior angle sum property of a quadrilateral,

$$
\begin{array}{rlrlrl} 
& & \angle R W E+\angle W E A+\angle E A R+\angle A R W & =360^{\circ} & \\
\Rightarrow & & \angle R W E+70^{\circ}+\angle E A R+80^{\circ} & =360^{\circ} & \\
\Rightarrow & \angle R W E+\angle E A R & =360^{\circ}-150^{\circ} & & \\
\Rightarrow & \angle R W E+\angle E A R & =210^{\circ} & \ldots \text { (i) } \\
\text { Now, } & \angle R W A & =\angle R A W & {[\because R W=R A]} & \ldots \text { (ii) } \\
& \text { and } & \angle A W E & =\angle W A E & {[\because W E=A E]} & \ldots \text { (iii) }
\end{array}
$$

On adding Eqs. (ii) and (iii), we get $\angle R W A+\angle A W E=\angle R A W+\angle W A E$
$\Rightarrow$
$\angle R W E=\angle R A E$
From Eq. (i),

$$
\begin{aligned}
2 \angle R W E & =210^{\circ} \\
\angle R W E & =105^{\circ} \quad \Rightarrow \quad \angle R W E=\angle R A E=105^{\circ}
\end{aligned}
$$

## Question. 152

## A rectangle MORE is shown below.



Answer the following questions by giving appropriate reason.
(i) Is $R E=O M$ ?
(ii) Is $\angle M Y O=\angle R X E$ ?
(iii) Is $\angle M O Y=\angle R E X$ ?
(iv) Is $\triangle M Y O \cong \triangle R X E$ ?
(v) Is $M Y=R X$ ?

Solution.
(i) Yes, $R E=O M$

Given, MORE is a rectangle. Therefore, opposite sides are equal.
(ii) Yes, $\angle M Y O=\angle R X E$

Here, MY and $R X$ are perpendicular to $O E$.
Since, $\angle R X O=90^{\circ} \Rightarrow \angle R X E=90^{\circ}$ and $\angle M Y E=90^{\circ} \Rightarrow \angle M Y O=90^{\circ}$
(iii) Yes, $\angle M O Y=\angle R E X$
$\because R E \| O M$ and $E O$ is a transversal.
$\therefore \angle M O E=\angle O E R \quad$ [:alternate interior angles]
$\Rightarrow \angle M O Y=\angle R E X$
(iv) Yes, $\triangle M Y O \cong \triangle R X E$

In $\triangle M Y O$ and $\triangle R X E$

$$
\begin{array}{rlrl}
M O & =R E & & \text { [proved in (ii)] } \\
& \angle M O Y & =\angle R E X & \\
& \angle M Y O & =\angle R X E & \\
\therefore & \triangle M Y O & \cong \Delta R X E & \text { [proved in in (ii)] } \\
\therefore & & \text { [by AAS] }
\end{array}
$$

(v) Yes, $M Y=R X$

Since, these are corresponding parts of congruent triangles.

Question. 153 In parallelogram LOST, SNLOL and $S M \perp L T$. Find $\angle S T M, \angle S O N$ and $\angle N S M$.


Solution.
Given, $\angle M S T=40^{\circ}$
In $\triangle M S T$,
By the angle sum property of a triangle, $\angle T M S+\angle M S T+\angle S T M=180^{\circ}$

```
\(\Rightarrow \quad \angle S T M=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)\)
                                    \(\left[\because S M \perp L T, \angle T M S=90^{\circ}\right]\)
\[
=50^{\circ}
\]
\(\therefore \quad \angle S O N=\angle S T M=50^{\circ} \quad[\because\) opposite angles of a parallelogram are equal]
```

Now, in the $\triangle O N S$,

$$
\begin{aligned}
& \angle O N S+\angle O S N+\angle S O N=180^{\circ} \quad \text { [angle sum property of triangle] } \\
& \angle O S N=180^{\circ}-\left(90^{\circ}+50^{\circ}\right) \\
& =120^{\circ}-140^{\circ}=40^{\circ} \\
& \text { Moreover, } \angle S O N+\angle T S O=180^{\circ} \\
& \text { [:adjacent angles of a parallelogram are supplementary] } \\
& \Rightarrow \quad \angle S O N+\angle T S M+\angle N S M+\angle O S \bar{N}=180^{\circ} \\
& \Rightarrow \quad 50^{\circ}+40^{\circ}+\angle N S M+40^{\circ}=180^{\circ} \\
& \Rightarrow \quad 90^{\circ}+40^{\circ}+\angle N S M=180^{\circ} \\
& \Rightarrow \quad 130^{\circ}+\angle N S M=180^{\circ} \\
& \Rightarrow \quad \angle N S M=180^{\circ}-130^{\circ}=50^{\circ}
\end{aligned}
$$

Question. 154 In trapezium HARE, EP and RP are bisectors of $\angle E$ and $\angle R$, respectively. Find $\angle H A R$ and $\angle E H A$.


Solution.

As $E P$ and $P R$ are angle bisectors of $\angle R E H$, and $\angle A R E$ respectively.
Since, HARE is a trapezium,
Therefore, $\angle E+\angle H=180^{\circ}$ and $\angle R+\angle A=180^{\circ}$
$\Rightarrow \angle P E R+\angle P E H+\angle H=180^{\circ}$ and $\angle E R P+\angle P R A+\angle R A H=180^{\circ}$
$\Rightarrow \quad 25^{\circ}+25^{\circ}+\angle H=180^{\circ}$ and $30^{\circ}+30^{\circ}+\angle A=180^{\circ}$
$\Rightarrow \quad 50^{\circ}+\angle H=180^{\circ}$ and $60^{\circ}+\angle A=180^{\circ}$
$\Rightarrow \quad \angle H=130^{\circ}$ and $\angle A=120^{\circ}$, i.e. $\angle E H A=130^{\circ}$ and $\angle H A R=120^{\circ}$

Question. 155 In parallelogram MODE, the bisectors of $\angle M$ and $\angle O$ meet at $\mathbf{Q}$. Find the measure of $\angle M Q O$.

Solution.
Let $M O D E$ be a parallelogram and $Q$ be the point of intersection of the bisector of $\angle M$ and $\angle O$.


Since, MODE is a parallelogram.

$$
\begin{align*}
\therefore & \angle E M O+\angle D O M & =180^{\circ} & \text { [ } \\
\Rightarrow & \frac{1}{2} \angle E M O+\frac{1}{2} \angle D O M & =90^{\circ} & \\
& \Rightarrow & \angle Q M O+\angle Q O M & =90^{\circ} \tag{i}
\end{align*}
$$

Now, in $\triangle M O Q$,

$$
\begin{array}{rlrl} 
& \angle Q O M+\angle Q M O+\angle M Q O & =180^{\circ} \\
\Rightarrow & & 90^{\circ}+\angle M Q O & =180^{\circ} \\
\therefore & \angle M Q O=180^{\circ}-90^{\circ} & =90^{\circ}
\end{array}
$$

[angle sum property of triangie]
[from Eq. (i)]

Question. 156 A playground is in the form of a rectangle ATEF. Two players are standing at the points $F$ and $B$, where $E F=E B$. Find the values of $x$ and $y$.


Solution.
Given, a rectangle $A T E F$ in which $E F=E B$. Then, $\triangle F E B$ is an isosceles triangle. Therefore, by the angle sum property of a triangle, we have

$$
\begin{array}{rlrl} 
& \angle E F B+\angle E B F+\angle F E B & =180^{\circ} & \quad \text { [angle sum property of triangle] } \\
\Rightarrow & \angle E F B+\angle E B F+90^{\circ} & =180^{\circ} \\
\Rightarrow & \angle E F B & =90^{\circ} & \quad\left[\because \text { in a rectangle, each angle is of } 90^{\circ}\right] \\
\angle E F B & =45^{\circ} \text { and } \angle E B F=45^{\circ} & {[\because \angle E F B=\angle E B F]}
\end{array}
$$

$$
\text { Now, } \angle x=180^{\circ}-45^{\circ}=135^{\circ} \quad \text { [linear pair] }
$$

$$
\text { and } \quad \angle E F B+\angle y=90^{\circ} \quad\left[\because \text { in a rectangle, each angle is of } 90^{\circ}\right]
$$

$$
\Rightarrow \quad \angle y=90^{\circ}-45^{\circ}=45^{\circ}
$$

Question. 157 In the following figure of a ship, ABDH and CEFG are two parallelograms. Find the value of $x$.


Solution.
We have, two parallelograms $A B D H$ and $C E F G$.
Now, in $A B D H$,
$\therefore \quad \angle A B D=\angle A H D=130^{\circ} \quad[\because$ opposite angles of a parallelogram are equal]
and $\angle G H D=180^{\circ}-\angle A H D=180^{\circ}-130^{\circ} \quad$ [linear pair]
$\Rightarrow \quad 50^{\circ}=\angle G H O$
Also, $\quad \angle E F G+\angle F G C^{\circ}=180^{\circ} \quad[\because$ adjacent angles of a parallelogram are supplementary $]$
$\Rightarrow \quad 30^{\circ}+\angle F G C=180^{\circ} \Rightarrow \angle F G C=180^{\circ}-30^{\circ}=150^{\circ}$
and $\quad \angle H G C+\angle F G C=180^{\circ}$ [linear pair]
$\therefore \quad \angle H G C=180^{\circ}-\angle F G C=180^{\circ}-150^{\circ}=30^{\circ}=\angle H G O$
In $\triangle H G O$, by using angle sum property, $\angle O H G+\angle H G O+\angle H O G=180^{\circ}$
$\Rightarrow \quad 50^{\circ}+30^{\circ}+x=180^{\circ} \Rightarrow x=180^{\circ}-80^{\circ}=100^{\circ}$

Question. 158 A rangoli has been drawn on the floor of a house. ABCD and PQRS both are in the shape of a rhombus. Find the radius of semi-circle drawn on each side of rhombus ABCD.


## Solution.

In rhombus $A B C D$,
$A O=O P+P A=2+2=4$ units and $O B=O Q+Q B=2+1=3$ units
We know that, diagonals of rhombus bisect each other at $90^{\circ}$.
Now,

$$
\begin{array}{lll}
\text { In } \triangle O A B_{1}(A B)^{2} & =(O A)^{2}+(O B)^{2} & \text { [by Pythagoras theorem] } \\
\Rightarrow & (A B)^{2} & =(4)^{2}+(3)^{2}=25 \\
\Rightarrow & A B & =\sqrt{25} \quad \Rightarrow \quad A B=5 \text { units }
\end{array}
$$

Since, $A B$ is diameter of semi-circle.
$\therefore \quad$ Radius $=\frac{\text { Diameter }}{2}=\frac{A B}{2}=\frac{5}{2}=2.5$ units
Hence, radius of the semi-circle is 2.5 units.

Question. 159 ABCDE is a regular pentagon. The bisector of angle A meets the sides CD at M. Find $\angle A M C$


Solution.

Given, a pentagon $A B C D E$. The line segment $A M$ is the bisector of the $\angle A$.
Now, since the measure of each interior angle of a regular pentagon is $108^{\circ}$.

$$
\therefore \quad \angle B A M=\frac{1}{2} \times 108^{\circ}=54^{\circ}
$$

By the angle sum property of a quadrilateral, we have (in quadrilateral $A B C M$ )

$$
\begin{array}{rlrl} 
& & \angle B A M+\angle A B C+\angle B C M+\angle A M C & =360^{\circ} \\
\Rightarrow & & 54^{\circ}+108^{\circ}+108^{\circ}+\angle A M C & =360^{\circ} \\
\Rightarrow & \angle A M C & =360^{\circ}-270^{\circ} \Rightarrow \angle A M C=90^{\circ}
\end{array}
$$

Question. 160 Quadrilateral EFGH is a rectangle in which $J$ is the point of intersection of the diagonals. Find the value of $x$, if $\mathrm{JF}=8 \mathrm{x}+4$ and $\mathrm{EG}=24 \mathrm{x}-8$.
Solution.
Given, $E F G H$ is a rectangle in which diagonals are intersecting at the point $J$.


We know that, the diagonals of a rectangle bisect each other and are equal.

$$
\begin{aligned}
& \text { Then, } \\
& E G=2 \times J F \\
& \Rightarrow \quad 24 x-8=2(8 x+4) \\
& \Rightarrow \quad 24 x-8=16 x+8 \\
& \Rightarrow \quad 24 x-16 x=8+8 \\
& \Rightarrow \quad 8 x=16 \Rightarrow x=2
\end{aligned}
$$

## Question. 161 Find the values of x and y in the following parallelogram.



## Solution.

In a parallelogram, adjacent angles are supplementary.

$$
\begin{aligned}
\therefore & & 120^{\circ}+(5 x+10)^{\circ} & =180^{\circ} \\
\Rightarrow & & 5 x+10^{\circ}+120^{\circ} & =180^{\circ} \\
\Rightarrow & & 5 x & =180^{\circ}-130^{\circ} \\
\Rightarrow & & 5 x & =50^{\circ} \\
\Rightarrow & & x & =10^{\circ}
\end{aligned}
$$

Also, opposite angles are equal in a parallelogram.
Therefore, $6 y=120^{\circ} \Rightarrow y=20^{\circ}$

Question. 162 Find the values of x and y in the following kite.


Solution.

The given figure is a kite.
In a kite, one pair of opposite angles are equal.
$\therefore \quad y=110^{\circ}$
Now, by the angle sum property of a quadrilateral, we have

$$
\begin{aligned}
110^{\circ}+60^{\circ}+110^{\circ}+x & =360^{\circ} \\
\Rightarrow \quad x & =360^{\circ}-280^{\circ} \Rightarrow \quad x=80^{\circ}
\end{aligned}
$$

Question. 163 Find the value of x in the trapezium ABCD given below.


Solution.
Given, a trapezium $A B C D$ in which $\angle A=(x-20)^{\circ}, \angle D=(x+40)^{\circ}$
Since, in a trapezium, the angles on either side of the base are supplementary, therefore

$$
\begin{array}{rlrl} 
& & (x-20)+(x+40) & =180^{\circ} \\
\Rightarrow & x-20+x+40 & =180^{\circ} \\
\Rightarrow & 2 x+20^{\circ} & =180^{\circ} \\
\Rightarrow & 2 x & =\left(180^{\circ}-20^{\circ}\right)=160^{\circ} \Rightarrow x=80^{\circ}
\end{array}
$$

Question. 164 Two angles of a quadrilateral are each of measure $75^{\circ}$ and the other two angles are equal. What is the measure of these two angles? Name the possible figures so formed.

Solution.
Let $A B C D$ be a quadrilateral,
where $\angle A=\angle C=75^{\circ}$ and $\angle B=\angle D=x$


Then, by the angle sum property of a quadrilateral, we have

$$
\begin{aligned}
\Rightarrow & \angle A+\angle B+\angle C+\angle D & =360^{\circ} \\
\Rightarrow & 75^{\circ}+x+75^{\circ}+x & =360^{\circ} \\
\Rightarrow & 2 x & =360^{\circ}-150^{\circ} \\
\Rightarrow & 2 x & =210^{\circ} \Rightarrow x=105^{\circ}
\end{aligned}
$$

Thus, other two angles are of $105^{\circ}$ each.
Since, opposite angles are equal, therefore the quadrilateral is a parallelogram.

Question. 165 In a quadrilateral PQRS, $\angle P=50^{\circ}, \angle Q=50^{\circ}, \angle R=60^{\circ}$. Find $\angle S$. Is this quadrilateral convex or concave?
Solution.
Given a quadrilateral $P Q R S$, where

$$
\angle P=50^{\circ}, \angle Q=50^{\circ} \text { and } \angle R=60^{\circ}
$$

Now, by the angle sum property of a quadrilateral, we have

$$
\begin{aligned}
& & \angle P+\angle Q+\angle R+\angle S & =360^{\circ} \\
\Rightarrow & & 50^{\circ}+50^{\circ}+60^{\circ}+\angle S & =360^{\circ} \\
\Rightarrow & & \angle S & =360^{\circ}-160^{\circ} \\
\Rightarrow & & \angle S & =200^{\circ}
\end{aligned}
$$

Since, one interior angle of the given quadrilateral is obtuse, therefore the quadriateral is concave.
supplementary. Find the measure of each angle.
Solution.
Let $A B C D$ be a quadrilateral, such that

$$
\angle A=\angle C, \angle B=\angle D \text { and also } \angle A+\angle C=180^{\circ}, \angle B+\angle D=180^{\circ}
$$

Now,

$$
\angle A+\angle A=180^{\circ}
$$

$$
[\because \angle C=\angle A]
$$

$\Rightarrow$
$2 \angle A=180^{\circ}$
$\Rightarrow$

$$
\angle A=90^{\circ}
$$

Similarly, $\angle B=90^{\circ}$
Hence, each angle is a right angle.

Question. 167 Find the measure of each angle of a regular octagon.
Solution.
Number of sides $(n)$ in octagon $=8$
Now, the sum of interior angles of a regular octagon $=(n-2) \times 180^{\circ}$

$$
\begin{aligned}
& =(8-2) \times 180^{\circ} \\
& =6 \times 180^{\circ}=1080^{\circ}
\end{aligned}
$$

Since, the octagon is regular, measure of each angle $=\frac{1080^{\circ}}{8}=135^{\circ}$

Question. 168 Find the measure of an exterior angle of a regular pentagon and an exterior angle of a regular decagon. What is the ratio between these two angles?
Solution.
We know that, number of sides in pentagon is 5 and in decagon is 10 .
Now, exterior angle of a regular pentagon $=\frac{360^{\circ}}{5}=72^{\circ}$
Exterior angle of a regular decagon $=\frac{360^{\circ}}{10}=36^{\circ}$
$\therefore$ Required ratio $=\frac{72}{36}=2: 1$
So, the ratio between these two angles is 2:1.

Question. 169 In the figure, find the value of $x$.


Solution.
We observe that, the given figure is a pentagon.
Now, we know that, sum of all the exterior angles of a pentagon is $360^{\circ}$.

$$
\begin{aligned}
\therefore & 92^{\circ}+20^{\circ}+85^{\circ}+x^{\circ}+89^{\circ} & =360^{\circ} \\
\Rightarrow & 286^{\circ}+x^{\circ} & =360^{\circ} \\
\Rightarrow & x^{\circ} & =360^{\circ}-286^{\circ}=74^{\circ}
\end{aligned}
$$

Question. 170 Three angles of a quadrilateral are equal. Fourth angle is of measure $120^{\circ}$. What is the measure of equal angles?
Solution.

Let the measures of equal angles be $x^{\circ}$ each.
Then, by the angle sum property of a quadrilateral, we have

$$
\begin{array}{rlrl} 
& & x^{\circ}+x^{\circ}+x^{\circ}+120^{\circ} & =360^{\circ} \\
\Rightarrow & 3 x^{\circ}+120^{\circ} & =360^{\circ} \\
\Rightarrow & 3 x^{\circ} & =240^{\circ} \\
\Rightarrow & x^{\circ} & =80^{\circ}
\end{array}
$$

Question. 171 In a quadrilateral HOPE, PS and ES are bisectors of $\angle P$ and $\angle E$ respectively. Give reason.

Solution. Data insufficient.

Question. 172 ABCD is a parallelogram. Find the values of $x, y$ and $z$.


Solution.
Given, a parallelogram $A B C D$.
In the $\triangle O B C$, we have

$$
y+30^{\circ}=100^{\circ}
$$

[exterior angle property of triangle]
$\Rightarrow \quad y=70^{\circ}$
By the angle sum property of a triangle,
we have, $x+y+30=180^{\circ}$
$\Rightarrow \quad x+70^{\circ}+30^{\circ}=180^{\circ} \Rightarrow x=180^{\circ}-100^{\circ}=80^{\circ}$
Now, since $A D \| B C$ and $B D$ is transversal, therefore

$$
\begin{array}{rlrl}
\angle A D O & =\angle O B C \quad \quad \text { [alternate interior angles] } \\
z & =30^{\circ} &
\end{array}
$$

$\Rightarrow$

Question. 173 Diagonals of a quadrilateral are perpendicular to each other. Is such a quadrilateral always a rhombus? Give a figure to justify your answer.
Solution.
False, it is not necessary that a quadrilateral having perpendicular diagonals is a rhombus.
e.g. Consider a trapezium $A B C D$ in which $A B \| C D$.


Question. 174 ABCD is a trapezium such that $\mathrm{AB} \| \mathrm{CD}, \angle A: \angle D=2: 1, \angle B: \angle C=7: 5$. Find the angles of the trapezium.
Solution.

Let $A B C D$ be a trapezium, where $A B \| C D$.


Let the angles $A$ and $D$ be of measures $2 x$ and $x$, respectively.
Then, $2 x+x=180^{\circ}$
[ $\because$ in trapezium, the angles on either side of the base are supplementary]
$\Rightarrow \quad 3 x=180^{\circ} \quad \Rightarrow \quad x=60^{\circ}$
$\therefore \quad \angle A=2 \times 60^{\circ}=120^{\circ}, \angle D=60^{\circ}$
Again, let the angles $B$ and $C$ be $7 x$ and $5 x$ respectively. Then, $7 x+5 x=180^{\circ}$
$\Rightarrow \quad, \quad 12 x=180^{\circ} \Rightarrow x=15^{\circ}$
Thus, $\quad \angle B=7 \times 15=105^{\circ}$ and $\angle C=5 \times 15=75^{\circ}$

Question. 175 A line / is parallel to Line $m$ and a-transversal $p$ intersects them at $X, Y$ respectively. Bisectors of interior angles at $X$ and $Y$ intersect at $P$ and $Q$. Is PXQY a rectangle? Give reason.
Solution.
Given, $/ \| m$

$$
\begin{array}{lrr}
\therefore & \angle D X Y= & \angle X Y A \\
\Rightarrow & \frac{\angle D X Y}{2}=\frac{\angle X Y A}{2} & \text { [alternate interior angles] } \\
& \text { [dividing both the sides by } 2 \text { ] }
\end{array}
$$



Now, $\quad \angle 1=\angle 2$
$[\because X P$ and $Y Q$ are bisectors]
$\because$ Alternate angles are equal, i.e. $\angle 1=\angle 2$
$\therefore \quad X P \| Q Y$
Similarly, $\quad X Q \| P Y$
From Eqs. (i) and (ii), we get
PXQY is a parallelogram.
$\Rightarrow \quad \angle D X Y+\angle X Y B=180^{\circ}$
[ $\because$ interior angles on the same side of transversal are supplementary]

$$
\begin{array}{r}
\frac{\angle D X Y}{2}+\frac{\angle X Y B}{2}=\frac{180^{\circ}}{2} \\
\angle 1+\angle 3=90^{\circ}
\end{array}
$$

In $\triangle X Y P$,

$$
\begin{align*}
\angle 1+\angle 3+\angle P & =180^{\circ} \\
90^{\circ}+\angle P & =180^{\circ} \\
\angle P & =90^{\circ} \tag{v}
\end{align*}
$$

From Eqs. (iii) and (v), PXQY is a rectangle.

Question. 176 ABCD is a parallelogram. The bisector of angle $A$ intersects $C D$ at $X$ and bisector of angle C intersects AB at Y . Is AXCY a parallelogram? Give reason.
Solution.

## Given, $A B C D$ is a parallelogram

So, $\angle A=\angle C$
[ $\because$ opposite angles of a parallelogram are equal]

$\therefore \quad \frac{\angle A}{2}=\frac{\angle C}{2} \quad$ [dividing both the sides by 2]

$$
\angle 1=\angle 2
$$

[alternate angles]
But $\quad \angle 2=\angle 3$
$[\because A B \| C D$ and $C Y$ is the transversal]
$\therefore \quad \angle 1=\angle 3$
But they are pair of corresponding angles.
$\therefore \quad A X \| Y C$
$A Y \| X C$
$\cdot[\because A B \| D C]$
From Eqs. (i) and (ii), we get
AXCY is a parallelogram.

Question. 177 A diagonal of a parallelogram bisects an angle. Will it also bisect the other angle? Give reason.
Solution. Consider a parallelogram $A B C D$.
Given, $\angle 1=\angle 2$
Since, $A B C D$ is a parallelogram.
$A B \| C D$ and $A C$ is the transversal.
$\therefore$
$\angle 1=\angle 4$
[alternate angles] ...(i)
Similarly,
[alternate angles]...(ii)
But given,

$$
\begin{equation*}
\angle 2=\angle 3 \tag{ii}
\end{equation*}
$$

$\therefore$
$\angle 1=\angle 2$
[from Eqs. (i) and (ii)]


Question. 178 The angle between the two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is $45^{\circ}$. Find the angles of the parallelogram.
Solution. Let $A B C D$ be a parallelogram, where $B E$ and $B F$ are the perpendiculars through the vertex $B$ to the sides $D C$ and $A D$, respectively.


Let $\angle A=\angle C=x, \angle B=\angle D=y \quad[\because$ opposite angles are equal in parallelogram] Now, $\angle A+\angle B=180^{\circ} \quad[\because$ adjacent sides of a parallelogram are supplementary]
$\Rightarrow x+\angle A B F+\angle F B E+\angle E B C=180^{\circ}$
$\Rightarrow x+90^{\circ}-x+45^{\circ}+90^{\circ}-x=180^{\circ}$
$\left[\because\right.$ in $\triangle A B F, \angle A B F=90^{\circ}-x$ and in $\left.\triangle B E C, \angle E B C=90^{\circ}-x\right]$
$\Rightarrow \quad-x=180^{\circ}-225^{\circ}$
$\Rightarrow \quad x=45^{\circ}$
$\therefore \quad \angle A=\angle C=45^{\circ}$
$\angle B=45^{\circ}+45^{\circ}+45^{\circ}=135^{\circ}$
$\Rightarrow \quad \angle D=135^{\circ}$
Hence, the angles are $45^{\circ}, 135^{\circ}, 45^{\circ}, 135^{\circ}$.

Question. 179 ABCD is a rhombus such that the perpendicular bisector of $A B$ passes through D. Find the angles of the rhombus.[Hint Join BD. Then, AABD is equilateral.] Solution. Let $A B C D$ be a rhombus in which $D E$ is perpendicular bisector of $A B$.


Join $B D$. Then, in $\triangle A E D$ and $\triangle B E D$, we have

$$
\begin{aligned}
A E & =E B \\
E D & =E D \\
\angle A E D & =\angle D E B=90^{\circ}
\end{aligned}
$$

Then, by $S A S$ rule, $\quad \triangle A E D \cong B E D$
$\therefore \quad A D=D B=A B \quad[\because A B C D$ is a rhombus. So, $A D=A B]$
Thus, $\triangle A D B$ is an equilateral triangle.

$$
\begin{array}{ll}
\therefore & \angle D A B=\angle D B A=\angle A D B=60^{\circ} \\
\Rightarrow & \angle D C B=60^{\circ} \\
\text { Now, } \quad \angle D A B+\angle A B C=180^{\circ} \quad \text { [opposite angles of a rhombus are equal] } \\
\Rightarrow 60^{\circ}+\angle A B D+\angle D B C=180^{\circ} \\
\Rightarrow & 60^{\circ}+60^{\circ}+\angle D B C=180^{\circ} \\
\Rightarrow & \angle D B C=60^{\circ} \\
\therefore & \angle A B C=\angle A B D+\angle D B C=60^{\circ}+60^{\circ}=120^{\circ} \\
\therefore & \angle A D C=120^{\circ} \\
\text { [opposite angles of a rhombles of a rhombus are supplementary] }
\end{array}
$$

Hence, the angles of the rhombus arc $60^{\circ}, 120^{\circ}, 60^{\circ}, 120^{\circ}$.

Question. 180 ABCD is a parallelogram. Point $P$ and $Q$ are taken on the sides $A B$ and AD, respectively and 4he parallelogram PRQA is formed. If $\angle C=45^{\circ}$, find $\angle R$.
Solution.

Let $A B C D$ be a parallelogram,
where $\angle C=45^{\circ}$


Since, $A B C D$ is a parallelogram,
$\angle A=\angle C \quad$ [opposite angles of parallelogram are equal]
Again, since $P R Q A$ is a parallelogram,

$$
\begin{aligned}
\angle A & =\angle R \\
\Rightarrow \quad \angle R & =45^{\circ}
\end{aligned}
$$

[opposite angles of parallelogram are equal]

$$
\left[\because \angle A=\angle C=45^{\circ}\right]
$$

Question. 181 In parallelogram ABCD , the angle bisector of $\angle A$ bisects BC . Will angle bisector of $B$ also bisect $A D$ ? Give reason.
Solution. Given, ABCD is a parallelogram, bisector of $\angle A$, bisects BC at F , i.e. $\angle 1=\angle 2, \mathrm{CF}=\mathrm{FB}$
Draw FE || BA.
$A B F E$ is a parallelogram by construction
$\Rightarrow \quad \angle 1=\angle 6$
$[\because F E \| B A]$
[alternate angle]


$\therefore A B F E$ is a rhombus.
Now, in $\triangle A B O$ and $\triangle B O F, A B=B F$
[from Eq. (i)]

$$
B O=B O
$$

[common]
[diagonals of rhombus bisect each other]
[by SSS]
[by CPCT]
Now, $\quad B F=\frac{1}{2} B C$
[given]
$\Rightarrow \quad B F=\frac{1}{2} A D$
$[B C=A D]$
$\Rightarrow \quad A E=\frac{1}{2} A D$
$[B F=A E]$
$\therefore E$ is the mid-point of $A D$.

Question. 182 A regular pentagon ABCDE and a square ABFG are formed on opposite sides of AB . Find $\angle B C F$ ?
Solution.


Given, $A B C D E$ is a regular pentagon.
Then, measure of each interior angle of the regular pentagon

$$
\begin{aligned}
& =\frac{\text { Sum of interior angles }}{\text { Number of sides }}=\frac{(x-2) \times 180^{\circ}}{5} \\
& =\frac{(5-2) \times 180^{\circ}}{5}=\frac{540^{\circ}}{5}=108^{\circ}
\end{aligned}
$$

$\therefore \quad \angle C B A=108^{\circ}$
Join CF.
Now, $\angle F B C=360^{\circ}-\left(90^{\circ}+108^{\circ}\right)=360^{\circ}-198^{\circ}=162^{\circ}$
In $\triangle F B C$, by the angle sum property, we have

$$
\begin{array}{rlrl} 
& & \angle F B C+\angle B C F+\angle B F C & =180^{\circ} \\
\Rightarrow & \angle B C F+\angle B F C & =180^{\circ}-162^{\circ} \\
\Rightarrow & \angle B C F+\angle B F C & =18^{\circ}
\end{array}
$$

Since, $\triangle F B C$ is an isosceles triangle and $B F=B C$.

$$
\therefore \quad \angle B C F=\angle B F C=9^{\circ}
$$

Question. 183 Find maximum number of acute angles which a convex quadrilateral, a pentagon and a hexagon can have. Observe the pattern and generalise the result for any polygon.
Solution. If an angle is acute, then the corresponding exterior angle is greater than $90^{\circ}$. Now, suppose a convex polygon has four or more acute angles. Since, the polygon is convex, all the exterior angles are positive, so the sum of the exterior angle is at least the sum of the interior angles. Now, supplementary of the four acute angles, which is greater than $4 \times 90^{\circ}=360^{\circ}$ However, this is impossible. Since, the sum of exterior angle of a polygon must equal to $360^{\circ}$ and cannot be greater than it. It follows that the maximum number of acute angle in convex polygon is 3 .

Question. 184 In the following figure, $F D$ || $B C$ || $A E$ and $A C$ || $E D$. Find the value of $x$.


Solution.

Produce $D F$ such that it intersects $A B$ at $G$.


In $\triangle A B C$,

$$
\begin{aligned}
\angle A+\angle B+\angle C & =180^{\circ} \quad \text { [angle sum property of triangle] } \\
\Rightarrow \quad 52^{\circ}+64^{\circ}+\angle C & =180^{\circ} \\
\angle C & =180^{\circ}-\left(52^{\circ}+64^{\circ}\right)=180^{\circ}-116^{\circ}=64^{\circ}
\end{aligned}
$$

Now, we see that, $D G \| B C$ and $D G \| A E$
$\therefore \quad \angle A C B=\angle A F G \quad[\because F G \| B C$ and $F C$ is a transversal, so corresponding angles]
$\Rightarrow \quad 64^{\circ}=\angle A F G$
Also, GFD is a straight line.
$\therefore \quad \angle G F A+\angle A F D=180^{\circ}$
[linear pair]
$\Rightarrow \quad 64^{\circ}+\angle A F D=180^{\circ}$
$\Rightarrow \quad \angle A F D=180^{\circ}-64^{\circ}=116^{\circ}$
Also, $F D \| A E$ and $A F \| E D$
So, $A E D F$ is a parallelogram.

```
\therefore [ }\quad\angleAFD=\angleAED opposite angles in a parallelogram are equal]
# }\quad\angleAED=x=116\mp@subsup{}{}{\circ
```

Question. 185 In the following figure, $A B \| D C$ and $A D=B C$. Find the value of $x$.


Solution.
Given, an isosceles trapezium, where $A B \| D C, A D=B C$ and $\angle A=60^{\circ}$.
Then, $\angle B=60^{\circ}$.
Draw a line parallel to $B C$ through $D$ which intersects the line $A B$ at $E$ (say).


Then, $D E B C$ is a parallelogram, where

$$
B E=C D=20 \mathrm{~cm} \text { and } D E=B C=10 \mathrm{~cm}
$$

Now, $\angle D E B+\angle C B E=180^{\circ}$
[adjacent angles are supplementary in parallelogram]
$\Rightarrow \quad \angle D E B=180^{\circ}-60^{\circ}=120^{\circ}$
$\therefore \ln \triangle A D E, \angle A D E=60^{\circ}$ - [exterior angle]
Also, $\quad \angle D E A=60^{\circ} \quad\left[\because A D=D E=10 \mathrm{~cm}\right.$ and $\left.\angle D A E=60^{\circ}\right]$
Then, $\triangle A D E$ is an equilateral triangle.
$\therefore \quad A E=10 \mathrm{~cm}$
$\Rightarrow \quad A B=A E+E B=10+20=30 \mathrm{~cm}$
Hence, $x=30 \mathrm{~cm}$

Question. 186 Construct a trapezium ABCD in which $\mathrm{AB} \| \mathrm{DC}, \angle A=105^{\circ}, \mathrm{AD}=3 \mathrm{~cm}, \mathrm{AB}=4$ cm and $\mathrm{CD}=8 \mathrm{~cm}$.
Solution.
We know that.


## Steps of Construction

Step 1 Draw $A B=4 \mathrm{~cm}$.
Step II Draw $\overline{A X}$ such that $\angle B A X=105^{\circ}$.
Step III Mark a point $D$ on $A X$ such that $A D=3 \mathrm{~cm}$.
Step IV Draw $\overline{D Y}$ such that $\angle A D Y=75^{\circ}$.
Step V. Mark a point $C$ such that $C D=8 \mathrm{~cm}$.
Step VI Join BC.
Hence, $A B C D$ is the required trapezium.

Question. 187 Construct a parallelogram ABCD in which $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and $\angle B=60^{\circ}$. Solution.

We know that, the opposite sides of a parallelogram are equal.
So,

$$
\begin{aligned}
A B & =D C=4 \mathrm{~cm} \\
B C & =A D=5 \mathrm{~cm} \\
\angle B & =60^{\circ} \\
\angle A+\angle B & =180^{\circ} \\
\angle A & =120^{\circ}
\end{aligned}
$$

[sum of cointerior angles]


Steps of Construction

## Step I Draw $A B=4 \mathrm{~cm}$.

Step II Draw ray $B X$ such that $\angle A B X=60^{\circ}$.
Step III Mark a point $C$ such that $B C=5 \mathrm{~cm}$.
Step IV Draw a ray $A Y$ such that $\angle Y A B=120^{\circ}$.
Step V Mark a point $D$ such that $A D=5 \mathrm{~cm}$.
Step VI Join C and D.
Hence, $A B C D$ is required parallelogram.

Question. 188 Construct a rhombus whose side is 5 cm and one angle is of $60^{\circ}$
Solution.


$$
\begin{aligned}
\angle B & =60^{\circ} \\
\angle A+\angle B & =180^{\circ} \\
\angle A+60^{\circ} & =180^{\circ} \\
\angle A & =120^{\circ} \\
A B & =B C=C D=D A=5 \mathrm{~cm}
\end{aligned}
$$

[suppose]
[sum of cointerior angles]

## Steps of Construction

Step I Draw $A B=5 \mathrm{~cm}$.
Step II Draw a ray $A Y$ such that $\angle B A Y=120^{\circ}$.
Step III Mark a point $D$ such that $A D=5 \mathrm{~cm}$.
Step IV Draw a ray $B X$ such that $\angle A B X=60^{\circ}$
Step V Mark a point $C$ such that $B C=5 \mathrm{~cm}$.
Step VI Joint $C$ and $D$.
$\therefore A B C D$ is the required rhombus.

Question. 189 Construct a rectangle whose one side is 3 cm and a diagonal is equal to 5 cm.

Solution.
We know that, diagonals of a rectangle and opposite sides are equal.
All the angles of rectangle are right angle.
So, $A C=5 \mathrm{~cm}$
$A B=3 \mathrm{~cm}$


## Steps of Construction

Step I Draw $A B=3 \mathrm{~cm}$ :
Step II Draw a ray $B X$ such that $\angle A B X=90^{\circ}$
Step III Draw an arc such that $A C=5 \mathrm{~cm}$.
Step IV With $B$ as centre, draw an arc of radius 5 cm . With $C$ as centre, draw an another arc of radius 3 cm which intersect first arc at a point, suppose $D$.
Step V Join CD and $A D$.
Thus, $A B C D$ is the required rectangle.

Question. 190 Construct a square of side 4 cm .
Solution.

We know that, all sides of a square are equal and each side is perpendicular to adjacent side.

$$
\text { So, } A B=B C=C D=D A=4 \mathrm{~cm}
$$



## Steps of Construction

Step 1 Draw $\overline{A B}=4 \mathrm{~cm}$.
Step II At $B$, draw $\overline{B X}$ such that $\angle A B X=90^{\circ}$.
Step III From $\overline{B X}$, cut-off $B C=4 \mathrm{~cm}$.
Step IV With centre $C$ and radius $=4 \mathrm{~cm}$, drawn an arc.
Step V with centre $A$ and radius $=4 \mathrm{~cm}$, draw another arc to intersect the previous arc at $D$.
Step VI Join DA and CD.
Thus, $A B C D$ is the required square.

Question. 191 Construct a rhombus CLUE in which $C L=7.5 \mathrm{~cm}$ and $L E=6 \mathrm{~cm}$.
Solution.
We know that, all sides of a rhombus are equal and opposite sides are parallel to each other.

## Steps of Construction

Step I Draw a line segment $C L=7.5 \mathrm{~cm}$.
Step II With $C$ as a centre, draw an $\operatorname{arc} C E=7.5 \mathrm{~cm}$.
Step III With $L$ as a centre, draw an another $\operatorname{arc} L U=7.5 \mathrm{~cm}$.


Step IV Now, with centre $L$, draw $\operatorname{an} \operatorname{arc} L E=6 \mathrm{~cm}$, which cut-off previous $\operatorname{arc} C E$.
Step V With $E$ as a centre, draw an $\operatorname{arc} U E=7.5 \mathrm{~cm}$, which cut-off previous arc $L U$.
Step VI Now join UL, CE and EU.
Thus, we have required rhombus CLUE.

Question. 192 Construct a quadrilateral $B E A R$ in which $B E=6 \mathrm{~cm}, E A=7 \mathrm{~cm}, R B=R E=5 \mathrm{~cm}$ and $B A=9 \mathrm{~cm}$. Measure its fourth side.

Solution.

## Steps of Construction

Step I Draw a line segment $B E=6 \mathrm{~cm}$.
Step II With $B$ as center, draw an $\operatorname{arc} B R=5 \mathrm{~cm}$ and with $E$ as a centre, draw an arc $E A=7 \mathrm{~cm}$.

Step III Now, draw an another arc $B A=9 \mathrm{~cm}$ with $B$ as a centre, which cut-off arc $A E$.
Step IV Draw an another $\operatorname{arc} E R=5 \mathrm{~cm}$ with $E$ as a centre, which cut-off $\operatorname{arc} B R$.
Step V Now join $B R, E A$ and $A R$.
Thus, we have required quadrilateral $B E A R$.
Also, $A R=5 \mathrm{~cm}$


Question. 193 Construct a parallelogram POUR in which $\mathrm{PO}=5.5 \mathrm{~cm}, \mathrm{OU}=7.2 \mathrm{~cm}$ and $\angle O=$ $70^{\circ}$.

Solution.
Since,


Since, opposite sides of a parallelogram are equal.

$$
\therefore P C=R U=5.5 \mathrm{~cm}, O U=R P=72 \mathrm{~cm}
$$

## Steps of Construction

Step I Draw PO $=5.5 \mathrm{~cm}$
Step II Construct $\angle P O X=70^{\circ}$.
Step III With $O$ as centre and radius $O U=7.2 \mathrm{~cm}$, draw an arc.
Step IV With $U$ as centre and radius $U R=5.5 \mathrm{~cm}$, draw an arc.
Step V With $P$ as centre and radius $P R=7.2 \mathrm{~cm}$ draw an arc to cut the arc drawn in Step IV.
Step VI Join PR and UR.
Hence, POUK is the required parallelogram.

Question. 194 Draw a circle of radius 3 cm and draw its diameter and label it as AC.
Construct its perpendicular bisector and let it intersect the circle at $B$ and $D$. What type of quadrilateral is ABCD? Justify your answer.
Solution.


## Steps of Construction

Step I Taking centre $O C=3 \mathrm{~cm}$, draw a circle.
Step II Join $A$ to $C$ and draw a perpendicular bisector of $A C$ that cuts the circumference of circle at $B$ and $D$.
Step III Join $B$ and $D$.
Step IV Thus, $A B C D$ is a cyclic quadrilateral.
Justification
In cyclic quadrilateral,

```
            \(\angle B=\angle D=90^{\circ}\)
                                [angle in a semi-circle]
            \(\angle A=\angle C=90^{\circ}\)
        \(\angle B+\angle D=180^{\circ}\)
    and \(\angle A+\angle C=180^{\circ}\)
```

                    [opposite angles are supplementary]
    Since, opposite angles are supplementary, thus quadrilateral is a cyclic quadrilateral.

Question. 195 Construct a parallelogram HOME with $\mathrm{HO}=6 \mathrm{~cm}, \mathrm{HE}=4 \mathrm{~cm}$ and $\mathrm{OE}=3 \mathrm{~cm}$. Solution.


## Steps of Construction

Step I Draw $H O=6 \mathrm{~cm}$.
Step II With $H$ as centre and radius $H E=4 \mathrm{~cm}$, draw an arc.
Step III With $O$ as centre and radius $O E=3 \mathrm{~cm}$, draw an arc, intersecting the arc drawn in step II at $E$.
Step IV With $E$ as centre and radius $E M=6 \mathrm{~cm}$, draw an arc opposite to the side $H E$.
Step V With $O$ as centre and radius $O M=4 \mathrm{~cm}$, draw an arc, intersecting the arc drawn in step IV at $M$.
Step VI Join HE, OE, EM and OM.
Hence, HOME is the required parallelogram.

Question. 196 Is it possible to construct a quadrilateral $A B C D$ in which $A B=3 \mathrm{~cm}, \mathrm{BC}=4$ $\mathrm{cm}, C D=5.4 \mathrm{~cm}, \mathrm{DA}=5.9 \mathrm{~cm}$ and diagonal $\mathrm{AC}=8 \mathrm{~cm}$ ? If not, why?
Solution. No,
Given measures are AS $=3 \mathrm{~cm}, \mathrm{SC}=4 \mathrm{~cm}, \mathrm{CD}=5.4 \mathrm{~cm}$,
$D A=59 \mathrm{cmand} A C=8 \mathrm{~cm}$
Here, we observe that $\mathrm{AS}+\mathrm{SC}=3+4=7 \mathrm{~cm}$ and $\mathrm{AC}=8 \mathrm{~cm}$
i.e. the sum of two sides of a triangle is less than the third side, which is absurd.

Hence, we cannot construct such a quadrilateral.

Question. 197 Is it possible to construct a quadrilateral ROAM in which RO $=4 \mathrm{~cm}, \mathrm{OA}=5$ $\mathrm{cm}, \angle O=120^{\circ}, \angle R=105^{\circ}$ and $\angle A=135^{\circ}$ ? If not, why?
Solution.

No,
Given measures are

$$
O A=5 \mathrm{~cm}, \angle O=120^{\circ}, \angle R=105^{\circ} \text { and } \angle A=135^{\circ}
$$

Here, we see that, $\angle O+\angle R+\angle A=120^{\circ}+105^{\circ}+135^{\circ}=360^{\circ}$
i.e. the sum of three angles of a quadrilateral is $360^{\circ}$.

This is impossible, as the total sum of angles is $360^{\circ}$ in a quadrilateral.
Hence, this quadrilateral cannot be constructed.

Question. 198 Construct a square in which each diagonal is 5 cm long.
Solution.


## Steps of Construction

Step I Draw AC =5cm.
Step II With $A$ as centre, draw arc of length slightly greater than $\frac{1}{2} A C$ above and below the line segment $A C$.
Step III With $C$ as centre, draw an arc of same length as in step II above and below the line segment $A C$ which intersect the arcs drawn in step II.
Step IV Join both the intersection points obtained in step III by a line segment which intersects $A C$ at $O$ (say).
Step $V$ With $O$ as centre cut-off $O B=O D=2.5 \mathrm{~cm}$ along the bisector line.
Step VI Join $A D, C D, A B$ and $C B$.
This is the required square $A B C D$.

Question. 199 Construct a quadrilateral NEWS in which NE $=7 \mathrm{~cm}, \mathrm{EW}=6 \mathrm{~cm}, \angle N=60^{\circ}$, $\angle E=110^{\circ}$ and $\angle S=85^{\circ}$
Solution.


Fourth angle $=360^{\circ}-\left(60^{\circ}+110^{\circ}+85^{\circ}\right)=360^{\circ}-255^{\circ}=105^{\circ}$

## Steps of Construction

Step I Draw NE =7cm.
Step II Make $\angle N E X=110^{\circ}$.
Step III With $E$ as centre and radius 6 cm , draw an arc, cutting $E X$ at $W$.
Step IV Make $\angle E W Y=105^{\circ}$
Step V Make $\angle E N Z=60^{\circ}$, so that $N Z$ and $W Y$ intersect each other at point $S$.
Thus, NEWS is the required quadrilateral.
are 5.6 cm and 7 cm . Measure the other side.
Solution.


## Steps of Construction

Step I Draw $A B=4 \mathrm{~cm}$.
Step II With $A$ as centre and radius 2.8 cm , draw an arc.
Step III With $B$ as centre and radius 3.5 cm , draw anather arc cutting the previous arc at $O$.
Step IV Join $O A$ and $O B$.
Step V Produce $A O$ to $C$ such that $O C=A O$ and produce $B O$ to $D$ such that $O D=B D$.
Step VI Join $A D, B C$ and $C D$.
Thus, $A B C D$ is the required parallelogram.
and other side $=5 \mathrm{~cm}$.

Question. 201 Find the measure of each angle of a regular polygon of 20 sides?
Solution.
We know that, the sum of interior angles of an $n$ polygon $=(n-2) \times 180^{\circ}$
Here, $n=20$, then

$$
\text { Sum }=(20-2) \times 180^{\circ}=18 \times 180^{\circ}=3240^{\circ}
$$

$\therefore$ The measure of each interior angle $=\frac{3240}{20}=162^{\circ}$

Question. 202 Construct a trapezium RISK in which RI\| $\mathrm{KS}, \mathrm{RI}=7 \mathrm{~cm}$, $\mathrm{IS}=5 \mathrm{~cm}, \mathrm{RK}=6.5 \mathrm{~cm}$ and $\angle I=60^{\circ}$.
Solution.


$$
\angle I+\angle S=180^{\circ}
$$

$60^{\circ}+\angle S=180^{\circ} \quad$ [cointerior angles]

$$
\angle S=120^{\circ}
$$

Steps of Construction
Step I Draw an arc $R I=7 \mathrm{~cm}$.
Step II Make $\angle R I X=60^{\circ}$.
Step III With $I$ as centre and radius 5 cm , draw an arc cutting $I X$ at $S$.
Step IV Make $\angle I S Y=120^{\circ}$
Step V With $R$ as centre and radius 6.5 cm , draw an arc cutting $S Y$ at $K$.
Step VI Join KR.
Thus, RISK is the required trapezium.

Question. 203 Construct a trapezium $A B C D$, where $A B \| C D, A D=B C=3.2 \mathrm{~cm}, A B=6.4 \mathrm{~cm}$ and $\mathrm{CD}=9.6 \mathrm{~cm}$. Measure $\angle B$ and $\angle A$

[Hint Difference of two parallel sides gives an equilateral triangle.]
Solution.


## Steps of Construction

Step I Draw a line segment $D C=9.6 \mathrm{~cm}$.
Step II With $D$ as center, draw an angle measure $60^{\circ}$. Now, cut-off it with an arc 3.2 cm called point $A$.
Step III Now, draw a parallel $A B$ to $C D$.
Step IV Talking $C$ as center, cut an $\operatorname{arc} B$ measure 3.2 cm on previous parallel line.
Step V Draw a line segment $B E=3.2 \mathrm{~cm}$ from $\operatorname{arc} B$.
Step VI Join $B$ to $E$ and $C$.
Thus, we have required trapezium $A B C D$ in which $\angle A=120^{\circ}$ and $\angle B=60^{\circ}$.

