EXERCISE 9.1

Write the correct answer in each of the following:

1. The median of a triangle divides it into two
(a) triangles of equal area.
(b) congruent triangles
(c) right triangles
(d) isosceles triangles.

Sol. The median of a triangle divides it into two triangles of equal area. Hence, (a) is the correct answer.
2. In which of the following figures, you find two polygons on the same base and between the same parallels?

(a)

(c)

(b)

(d)

Sol. In figure (d), we find two polygons (parallelograms) on the same base and between the same parallels.
3. The figure obtained by joining the mid-points of the adjacent sides of a rectangle of sides 8 cm and 6 cm is:
(a) a rectangle of area $24 \mathrm{~cm}^{2}$
(b) a square of area $25 \mathrm{~cm}^{2}$
(c) a trapezium of area $24 \mathrm{~cm}^{2}$
(d) a rhombus of area $24 \mathrm{~cm}^{2}$

Sol. ABCD is a rectangle and $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are the mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively. The figure obtained

is a rhombus whose area $=\frac{1}{2} \times \mathrm{EG} \times \mathrm{FH}=\frac{1}{2} \times 6 \mathrm{~cm} \times 8 \mathrm{~cm}=24 \mathrm{~cm}^{2}$
Hence, (d) is the correct answer.
4. In the given figure, the area of parallelogram ABCD is:
(a) $\mathrm{AB} \times \mathrm{BM}$ (b) $\mathrm{BC} \times \mathrm{BN}$
(c) $\mathrm{DC} \times \mathrm{DL}$
(d) $\mathrm{AD} \times \mathrm{DL}$

Sol. \quad Area of a parallelogram $=$ Base \times Corresponding altitude
$=\mathrm{AB} \times \mathrm{DL}=\mathrm{DC} \times \mathrm{DL}$
$[\because \mathrm{AB}=\mathrm{DC}($ Opposite sides of a $\| \mathrm{gm})]$
Hence, (c) is the correct answer.
5. In the given figure, if parallelogram ABCD and rectangle ABEM are of equal area then
(a) perimeter of $\mathrm{ABCD}=$ perimeter of ABEM
(b) perimeter of $\mathrm{ABCD}<$ perimeter of ABEM
(c) perimeter of $\mathrm{ABCD}>$ perimeter of ABEM

(d) perimeter of $\mathrm{ABCD}=\frac{1}{2}$ (perimeter of ABEM)

Sol. If parallelogram ABCD and rectangle ABEM are of equal area, then perimeter of $\mathrm{ABCD}>$ perimeter of ABEM because of all the line segments to a given line from a point outside it, the perpendicular is the least. Hence, (c) is the correct answer.
6. The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to
(a) $\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
(b) $\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
(c) $\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
(d) $\operatorname{ar}(\triangle \mathrm{ABC})$

Sol. Since median of a triangle divides it into two triangles of equal area

$$
\begin{align*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{ADE}) & =\operatorname{ar}(\triangle \mathrm{BDE}) \tag{1}\\
\operatorname{ar}(\triangle \mathrm{AEF}) & =\operatorname{ar}(\triangle \mathrm{EFC}) \tag{2}
\end{align*}
$$

Since AE is the diagonal of a parallelogram ADEF. It divides it into two triangles of equal area.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{AFE}) \tag{3}
\end{equation*}
$$

From (1), (2) and (3), we get
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{AEF})=\operatorname{ar}(\triangle \mathrm{EFC})$
Hence, $\operatorname{ar}(\mathrm{ADEF})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
So, (a) is the correct answer.
7. Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is
(a) $1: 2$
(b) $1: 1$
(c) $2: 1$
(d) $3: 1$

Sol. We know that parallelograms on the same or equal bases and between the same parallels are equal in area .
So, the ratio of their areas is $1: 1$
Hence, (b) is the correct answer.
8. ABCD is a quadrilateral whose diagonal AC divides it in two parts, equal in area, then ABCD
(a) is a rectangle
(b) is always a rhombus
(c) is a parallelogram
(d) need not be any of $(a),(b)$, or (c).

Sol. Since diagonal of a parallelogram divides it into two triangles of equal area and rectangle and a rhombus are also parallelograms. then ABCD need not be any of $(a),(b)$ or (c).
Hence, (d) is the correct answer.
9. If a triangle and a parallelogram are on the same base and between the same parallels, then the ratio of the area of the triangle to the area of parallelogram is
(a) $1: 3$
(b) $1: 2$
(c) $3: 1$
(d) $1: 4$

Sol. We know that a triangle and a parallelogram are on the same base and between the same parallels, then the area of the triangle is equal to half the area of the parallelogram. Hence the ratio of the area of the triangle to the area of parallelogram is 1:2.
Hence, (b) is the correct answer.
10. ABCD is a trapezium with parallel sides $\mathrm{AB}=a \mathrm{~cm}$ and $\mathrm{DC}=b \mathrm{~cm}$ (see fig.) E and F are the mid-points of non parallel sides. The ratio of ar (ABFE) and ar (EFCD) is
(a) $a: b$
(b) $(3 a+b):(a+3 b)$
(c) $(a+3 b):(3 a+b)$
(d) $(2 a+b):(3 a+b)$

Sol. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$. E and F are the mid-points of AD and $B C$, so

$$
\mathrm{EF}=\frac{1}{2}(a+b)
$$

ABEF and EFCD are also trapeziums.

$$
\begin{aligned}
\operatorname{ar}(\mathrm{ABEF}) & =\frac{1}{2}\left[\frac{1}{2}(a+b)+a\right] \times h=\frac{h}{4}(3 a+b) \\
\operatorname{ar}(\mathrm{EFCD}) & =\frac{1}{2}\left[b+\frac{1}{2}(a+b)\right] \times h=\frac{h}{4}(a+3 b) \\
\therefore \quad \frac{\operatorname{ar}(\mathrm{ABEF})}{\operatorname{ar}(\mathrm{EFCD})} & =\frac{\frac{h}{4}(3 a+b)}{\frac{h}{4}(a+3 b)}=\frac{(3 a+b)}{(a+3 b)}
\end{aligned}
$$

So, the required ratio is $(3 a+b):(a+3 b)$. Hence, (b) is the correct answer.

EXERCISE 9.2

Write True or False and justify your answer:

1. $A B C D$ is a parallelogram and X is the mid-point of $A B$. If $\operatorname{ar}(\mathrm{AXCD})=24 \mathrm{~cm}^{2}$, then $\operatorname{ar}(\triangle \mathrm{ABC})=24 \mathrm{~cm}^{2}$.
Sol. We have ABCD is a parallelogram and X is the mid-point of AB .
Now,

$$
\begin{equation*}
\operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{AXCD})+\operatorname{ar}(\triangle \mathrm{XBC}) \tag{1}
\end{equation*}
$$

\because Diagonal AC of a parallelogram divides it into two triangles of equal area.
$\therefore \quad \operatorname{ar}(\mathrm{ABCD})=2 \operatorname{ar}(\triangle \mathrm{ABC})$
Again X is the mid-point of $A B$, so

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{CXB})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC}) \tag{3}
\end{equation*}
$$

$[\because$ Median divides the triangle in two triangles of equal area]

$$
\therefore \quad 2 \operatorname{ar}(\triangle \mathrm{ABC})=24+\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})
$$

[Using (1), (2) and (3)]
$\therefore 2 \operatorname{ar}(\triangle \mathrm{ABC})-\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})=24$
$\Rightarrow \quad \frac{3}{2} \operatorname{ar}(\triangle \mathrm{ABC})=24$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ABC})=\frac{2 \times 24}{3}=16 \mathrm{~cm}^{2}$
Hence, the given statement is false.
2. PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm . A is any point on $P Q$. If $P S=5 \mathrm{~cm}$, then $\operatorname{ar}(\triangle \mathrm{PAS})=30 \mathrm{~cm}^{2}$.
Sol. It is given that A is any point on PQ , therefore, $\mathrm{PA}<\mathrm{PQ}$.
It is given that A is any point on $P Q$, therefore $\mathrm{PA}<\mathrm{PQ}$.

Now, ar $(\triangle \mathrm{PQR})=\frac{1}{2} \times$ base \times height

Now, ar $(\triangle \mathrm{PQR})=\frac{1}{2} \times \mathrm{PQ} \times \mathrm{QR}=\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}$
$[\because \mathrm{PQRS}$ is a rectangle $\therefore \mathrm{RQ}=\mathrm{SP}=5 \mathrm{~cm}$]
As

$$
\mathrm{PA}<\mathrm{PQ}(=12 \mathrm{~cm})
$$

So $\quad \operatorname{ar}(\triangle \mathrm{PAS})<\operatorname{ar}(\triangle \mathrm{PQR})$
or $\quad \operatorname{ar}(\triangle \mathrm{PAS})<30 \mathrm{~cm}^{2} \quad\left[\because \operatorname{ar}(\triangle \mathrm{PQR})=30 \mathrm{~cm}^{2}\right]$
Hence, the given statement is false.
3. PQRS is a parallelogram whose area is $180 \mathrm{~cm}^{2}$ and A is any point on the diagonal QS. The area of $\Delta \mathrm{ASR}=90 \mathrm{~cm}^{2}$.
Sol. PQRS is a parallelogram.
We know that diagonal (QS) of a parallelogram divides parallelogram into two triangles of equal area, so

$$
\begin{aligned}
\therefore \quad \operatorname{ar}(\triangle \mathrm{QRS}) & =\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \text { PQRS }) \\
& =\frac{1}{2} \times 180=90 \mathrm{~cm}^{2}
\end{aligned}
$$

$\because \mathrm{A}$ is any point on SQ
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ASR})<\operatorname{ar}(\triangle \mathrm{QRS})$
Hence, $\operatorname{ar}(\triangle \mathrm{ASR})<90 \mathrm{~cm}^{2}$.
Hence, the given statement is false.
4. ABC and BDE are two equilateral triangles such that D is the mid-point of $B C$. Then, $\operatorname{ar}(\triangle B D E)=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$.
Sol. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$ are two equilateral triangles.
Let each side of triangle ABC be x.

Again, D is the mid-point of BC , so each side of triangle BDE is $\frac{x}{2}$.
Now, $\frac{\operatorname{ar}(\triangle \mathrm{BDE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{\frac{\sqrt{3}}{4} \times\left(\frac{x}{2}\right)^{2}}{\frac{\sqrt{3}}{4} \times x^{2}}=\frac{x^{2}}{4 x^{2}}=\frac{1}{4}$
Hence, $\quad \operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
\therefore The given statement is true.
5. In the given figure, ABCD and EFGD are two parallelograms and G is the mid-point of CD. Then
$\operatorname{ar}(\triangle \mathrm{DPC})=\frac{1}{2} \operatorname{ar}(\|$ gm EFGD $)$.

Sol. As $\triangle \mathrm{DPC}$ and $\| \mathrm{gm} \mathrm{ABCD}$ are on the same base DC and between the same parallels $A B$ and $D C$, so

$$
\begin{aligned}
\operatorname{ar}(\triangle \mathrm{DPC}) & =\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \cdot \mathrm{ABCD}) \\
& =\operatorname{ar}(\| \text { gm EFGD }) \quad[\because \text { G is the mid point of } D C]
\end{aligned}
$$

Hence, the given statement is false.

EXERCISE 9.3

1. In given figure, PSDA is a parallelogram. Points Q and R are taken on PS such that $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$ and $\mathrm{PA}\|\mathrm{QB}\| \mathrm{RC}$. Prove that ar $(\triangle \mathrm{PQE})=\operatorname{ar}(\Delta \mathrm{CFD})$.

Sol. PSDA is a parallelogram. Points Q and R are taken on PS such that $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$ and $\mathrm{PA}\|\mathrm{QB}\| \mathrm{RC}$.
We have to prove that ar $(\triangle \mathrm{PQE})=\operatorname{ar}(\triangle \mathrm{CFD})$.
Now,

$$
\mathrm{PS}=\mathrm{AD} \quad[\mathrm{Opp} . \text { sides of } \mathrm{a} \| \mathrm{gm}]
$$

$\therefore \quad \frac{1}{3} \mathrm{PS}=\frac{1}{3} \mathrm{AD} \Rightarrow \mathrm{PQ}=\mathrm{CD}$
Again, $\mathrm{PS} \| \mathrm{AD}$ and QB cut them,
$\therefore \quad \angle \mathrm{PQE}=\angle \mathrm{CBE}$
[Alt. $\angle s$]
Now, $\mathrm{QB} \| \mathrm{RC}$ and AD cuts them
$\begin{array}{ll}\therefore & \angle \mathrm{QBD}=\angle \mathrm{RCD} \\ \text { so, } & \angle \mathrm{PQE}=\angle \mathrm{FCD}\end{array}$
[Corres. $\angle s] \ldots$...(3)
[From (2) and (3), $\angle \mathrm{CBE}$ and $\angle \mathrm{QBD}$ are same and $\angle \mathrm{RCD}$ and $\angle \mathrm{FCD}$ are same] Now, in $\triangle \mathrm{PQE}$ and $\triangle \mathrm{CFD}$

2. X and Y are points on the side LN_{L} of the triangle LMN such that $\mathrm{LX}=\mathrm{XY}=\mathrm{YN}$. Through X , a line is drawn parallel to LM to meet MN at Z (See figure). Prove that $\operatorname{ar}(\mathrm{LZY})=\operatorname{ar}(\mathrm{MZYX})$.

Sol. We have to prove that ar $(\triangle \mathrm{LZY})=$ ar (MZYX)
Since $\triangle L X Z$ and $\triangle X M Z$ are on the same base and between the same parallels LM and XZ, we have

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{LXZ})=\operatorname{ar}(\Delta \mathrm{XMZ}) \tag{1}
\end{equation*}
$$

Adding ar ($\triangle \mathrm{XYZ})$ to both sides of (1), we get

$$
\begin{array}{rlrl}
& & \operatorname{ar}(\Delta \mathrm{LXZ})+\operatorname{ar}(\Delta \mathrm{XYZ}) & =\operatorname{ar}(\Delta \mathrm{XMZ})+\operatorname{ar}(\Delta \mathrm{XYZ}) \\
\Rightarrow \quad \operatorname{ar}(\Delta \mathrm{LZY}) & =\operatorname{ar}(\mathrm{MZYX})
\end{array}
$$

3. The area of the parallelogram ABCD is $90 \mathrm{~cm}^{2}$ (See fig.). Find (i) $\operatorname{ar}(\mathrm{ABEF})$
(ii) ar ($\triangle \mathrm{ABD})$
(iii) ar (\triangle BEF)

Sol. (i) Since parallelograms on the same base and
 between the same parallels are equal in area, so we have

Hence

$$
\operatorname{ar}(\| \operatorname{gm} \mathrm{ABEF})=\operatorname{ar}(\| \operatorname{gm~ABCD})
$$

(ii) $\operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \operatorname{ar}(\|$ gm ABCD$)$
$[\because$ A diagonal of a parallelogram divides the parallelogram in two triangles of equal area]

$$
=\frac{1}{2} \times 90 \mathrm{~cm}^{2}=45 \mathrm{~cm}^{2} .
$$

(iii) $\operatorname{ar}(\triangle \mathrm{BEF})=\frac{1}{2} \operatorname{ar}(\|$ gm ABEF $)=\frac{1}{2} \times 90 \mathrm{~cm}^{2}=45 \mathrm{~cm}^{2}$.
4. In $\triangle A B C, D$ is the mid-point of $A B$ and P is any point on $B C$. If $C Q \| P D$ meets AB in Q (See fig.), then prove that $\operatorname{ar}(\triangle \mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$.

Sol. D is the mid-point of $A B$ and P is any point on $B C$ of $\triangle A B C . C Q \| P D$ meets AB in Q , we have to prove that $\operatorname{ar}(\triangle \mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$.
Join CD. Since median of a triangle divides it into two triangles of equal area, so we have

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{BCD})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC}) \tag{1}
\end{equation*}
$$

Since triangles on the same base and between the same parallels are equal in area, so we have

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{DPQ})=\operatorname{ar}(\Delta \mathrm{DPC}) \tag{2}
\end{equation*}
$$

$[\because$ Triangle DPQ and DPC are on the same base DP and between the same parallels DP and CQ] $\operatorname{ar}(\Delta \mathrm{DPQ})+\operatorname{ar}(\Delta \mathrm{DPB})=\operatorname{ar}(\Delta \mathrm{DPC})+\operatorname{ar}(\Delta \mathrm{DPB})$
Hence, $\operatorname{ar}(\triangle \mathrm{BPQ})=\operatorname{ar}(\triangle \mathrm{BCD})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
5. ABCD is a square. E and F are respectively the mid-points of $B C$ and $C D$. If R is the mid-point of EF (See fig.) prove that $\operatorname{ar}(\Delta \mathrm{AER})=\operatorname{ar}(\Delta \mathrm{AFR})$.
Sol. ABCD is a square. E and F are respectively the mid-points of $B C$ and $C D$. If R is the mid-point of $E F$, we have to prove that $\operatorname{ar}(\triangle \mathrm{AER})=\operatorname{ar}(\triangle \mathrm{AFR})$.
In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ADF}$, we have

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AD} \\
\angle \mathrm{ABE} & =\angle \mathrm{ADF} \\
\mathrm{BE} & =\mathrm{DF}
\end{aligned}
$$

[Sides of a square are equal]
[Each 90°]
$[\because E$ is the mid-point of BC and F is the mid-point of CD . Also $\left.\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{CD}\right]$

$$
\begin{array}{rlrl}
& & \operatorname{ar}(\triangle \mathrm{ABE}) & \cong \operatorname{ar}(\triangle \mathrm{ADF}) \\
\therefore & \mathrm{AE} & =\mathrm{AF}
\end{array}
$$

[By SAS Congruence rule]
(CPCT) ...(1)
Now, in $\triangle A E R$ and $\triangle A F R$, we have

$$
\begin{aligned}
\mathrm{AE} & =\mathrm{AF} \\
\mathrm{ER} & =\mathrm{RF} \\
\mathrm{AR} & =\mathrm{AR}
\end{aligned}
$$

[From(1)]
and
$\therefore \quad \triangle \mathrm{AER} \cong \triangle \mathrm{AFR}$
[By SSS rule of congruence]
Hence, $\operatorname{ar}(\triangle \mathrm{AER})=\operatorname{ar}(\triangle \mathrm{AFR})[\because$ Congruent triangles are equal in area $]$
6. In the given figure, O is any point on the diagonal PR of a parallelogram PQRS. Prove that $\operatorname{ar}(\triangle \mathrm{PSO})=\operatorname{ar}(\triangle \mathrm{PQO})$
Sol. Join SQ, bisects the
 diagonal PR at M.
Since diagonals of a parallelogram bisect each other, so $\mathrm{SM}=\mathrm{MQ}$. Therefore, PM is a median of $\triangle \mathrm{PQS}$.

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{PSM})=\operatorname{ar}(\Delta \mathrm{PQM}) \tag{1}
\end{equation*}
$$

$[\because$ Median divides a triangle into two triangles of equal area]

Again, as OM is the median of triangle $\triangle \mathrm{OSQ}$, so

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{OSM})=\operatorname{ar}(\triangle \mathrm{OQM}) \tag{2}
\end{equation*}
$$

Adding (1) and (2), we get

$$
\begin{array}{rlrl}
& \operatorname{ar}(\Delta \mathrm{PSM})+\operatorname{ar}(\Delta \mathrm{OSM}) & =\operatorname{ar}(\Delta \mathrm{PQM})+\operatorname{ar}(\Delta \mathrm{OQM}) \\
\Rightarrow \quad \operatorname{ar}(\Delta \mathrm{PSO}) & =\operatorname{ar}(\Delta \mathrm{PQO})
\end{array}
$$

Hence, proved.
7. ABCD is a parallelogram in which BC is produced to E such that $\mathrm{CE}=\mathrm{BC}$ in the given figure. AE intersects CD at F .

If ar $(\triangle \mathrm{DFB})=3 \mathrm{~cm}^{2}$, find the area of the parallelogram $A B C D$.

Sol. In $\triangle \mathrm{ADF}$ and $\triangle \mathrm{EFC}$, we have
$\angle \mathrm{DAF}=\angle \mathrm{CEF}$ [Alt. interior $\angle s$]

$$
\begin{gathered}
\mathrm{AD}=\mathrm{CE} \\
\angle \mathrm{ADF}=\angle \mathrm{FCE}
\end{gathered}
$$

$$
\therefore \quad \triangle \mathrm{ADF} \cong \triangle \mathrm{ECF}
$$

$$
\therefore \quad \mathrm{DF}=\mathrm{CF}
$$

$[\because \mathrm{AD}=\mathrm{BC}=\mathrm{CE}$ [Given] $]$
[Alt interior $\angle s$]
[By SAS rule of congruence]
[CPCT]

As $B F$ is median of $\triangle B C D$,

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{BDF})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{BCD}) \tag{1}
\end{equation*}
$$

$[\because$ Median divides a triangle into two triangles of equal area]
Now, if a triangle and a parallelogram are on the same base and between the same parallels, then the area of the triangles is equal to half the area of the parallelogram.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{BCD})=\frac{1}{2}$ ar $(\|$ gm ABCD $)$
\therefore By (1), we have ar $(\triangle \mathrm{BDF})=\frac{1}{2}\left\{\frac{1}{2} \operatorname{ar}(\|\right.$ gm ABCD $\left.)\right\}$
$\Rightarrow \quad 3 \mathrm{~cm}^{2}=\frac{1}{4} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
$\Rightarrow \operatorname{ar}(\| g m ~ A B C D)=12 \mathrm{~cm}^{2}$
Hence, the area of the parallelogram ABCD is $12 \mathrm{~cm}^{2}$.
8. In trapezium ABCD, $\mathrm{AB} \| \mathrm{DC}$ and L is the mid-point of $B C$. Through L, a line $\mathrm{PQ} \mid \| \mathrm{AD}$ has been drawn which meets $A B$ in P and DC produced in Q (See figure). Prove that
 $\operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{APQD})$.
Sol. As AB || DC, so AB || DQ In $\triangle C L Q$ and $\triangle B L P$, we have

$$
\begin{array}{rlrr}
\therefore & & \angle \mathrm{QCL} & =\angle \mathrm{LBP} \\
& & \text { CL } & =\mathrm{LB} \\
& \angle \mathrm{CLQ} & =\angle \mathrm{BLP} & {[\because \text { L is the mid. } \angle s]} \\
\therefore & \Delta \mathrm{CLQ} & \cong \Delta \mathrm{BLP} & {[\text { Vertically opposite } \angle s]} \\
\Rightarrow & \operatorname{ar}(\Delta \mathrm{CLQ}) & =\operatorname{ar}(\Delta \mathrm{BLP}) & \ldots(1)[\text { Congruent } \Delta \text { s are equal in area] }
\end{array}
$$

Adding ar (APLCD) to both sides of (1), we get
$\operatorname{ar}(\triangle \mathrm{CLQ})+\operatorname{ar}(\mathrm{APLCD})=\operatorname{ar}(\triangle \mathrm{BLP})+\operatorname{ar}(\mathrm{APLCD})$
$\Rightarrow \quad \operatorname{ar}(\mathrm{APQD})=\operatorname{ar}(\mathrm{ABCD})$
Hence, $\operatorname{ar}(A B C D)=\operatorname{ar}(A P Q D)$
9. If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of the area of the given quadrilateral. (figure)
[Hint: Join BD and draw perpendicular from A on BD].

Sol.

Given: A quadrilateral ABCD in which the mid-points of the sides of it are joined in order to form parallelogram PQRS.

To prove: $\operatorname{ar}(\| g m ~ P Q R S)=\frac{1}{2}$ ar $(\square \mathrm{ABCD})$
Construction: Join BD and draw perpendicular from A on BD which interect SR and BD at X and Y respectively.
Proof: In $\triangle A B D, S$ and R are the mid-points of sides $A B$ and $A D$ respectively.
$\begin{array}{ll}\therefore & \text { SR\|BD } \\ \Rightarrow & \text { SX\|BY }\end{array}$
$\Rightarrow \mathrm{X}$ is the mid-point of $\mathrm{AY} \quad$ [Converse of mid-point theorem]
$\Rightarrow \quad \mathrm{AX}=\mathrm{XY} \quad . .(1)$
$[\because S$ is the mid-point of AB and $\mathrm{SX} \| \mathrm{BY}]$
And, $\quad \mathrm{SR}=\frac{1}{2} \mathrm{BD} \quad .$. (2) $[\because$ Mid-point theorem $]$
Now, $\quad \operatorname{ar}(\Delta \mathrm{ABD})=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AY}$
and $\quad \operatorname{ar}(\triangle \mathrm{ASR})=\frac{1}{2} \times \mathrm{SR} \times \mathrm{AX}$
$\Rightarrow \quad \operatorname{ar}(\Delta \mathrm{ASR})=\frac{1}{2} \times\left(\frac{1}{2} \mathrm{BD}\right) \times\left(\frac{1}{2} \mathrm{AY}\right) \quad[\mathrm{Using}(1)$ and (2)]
$\Rightarrow \quad \operatorname{ar}(\Delta \mathrm{ASR})=\frac{1}{4} \times\left(\frac{1}{2} \times \mathrm{BD} \times \mathrm{AY}\right)$
$\Rightarrow \quad \operatorname{ar}(\Delta \mathrm{ASR})=\frac{1}{4} \operatorname{ar}(\Delta \mathrm{ABD})$
Similarly,

$$
\begin{align*}
& \operatorname{ar}(\triangle \mathrm{CPQ})=\frac{1}{4} \operatorname{ar}(\Delta \mathrm{CBD}) \tag{4}\\
& \operatorname{ar}(\triangle \mathrm{BPS})=\frac{1}{4} \operatorname{ar}(\Delta \mathrm{BAC}) \tag{5}\\
& \operatorname{ar}(\triangle \mathrm{DRQ})=\frac{1}{4} \operatorname{ar}(\Delta \mathrm{DAC}) \tag{6}
\end{align*}
$$

Adding (3), (4), (5) and (6), we get $\operatorname{ar}(\triangle \mathrm{ASR})+\operatorname{ar}(\Delta \mathrm{CPQ})+\operatorname{ar}(\triangle \mathrm{BPS})+\operatorname{ar}(\Delta \mathrm{DRQ})$

$$
\begin{aligned}
= & \frac{1}{4} \operatorname{ar}(\Delta \mathrm{ABD})+\frac{1}{4} \operatorname{ar}(\Delta \mathrm{CBD})+\frac{1}{4} \operatorname{ar}(\Delta \mathrm{BAC}) \\
& +\frac{1}{4} \operatorname{ar}(\Delta \mathrm{DAC})
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{4}[\operatorname{ar}(\Delta \mathrm{ABD})+\operatorname{ar}(\Delta \mathrm{CBD}) \\
& +\operatorname{ar}(\Delta \mathrm{BAC})+\operatorname{ar}(\Delta \mathrm{DAC})] \\
= & \frac{1}{4}[\operatorname{ar}(\square \mathrm{ABCD})+\operatorname{ar}(\square \mathrm{ABCD})] \\
= & \frac{1}{4} \times 2 \operatorname{ar}(\square \mathrm{ABCD}) \\
= & \frac{1}{2} \operatorname{ar}(\square \mathrm{ABCD})
\end{aligned} \quad \begin{aligned}
& \therefore \operatorname{ar}(\triangle \mathrm{ASR})+\operatorname{ar}(\Delta \mathrm{CPQ})+\operatorname{ar}(\triangle \mathrm{BPS})+\operatorname{ar}(\triangle \mathrm{DRQ}) \\
&= \frac{1}{2} \operatorname{ar}(\square \mathrm{ABCD})
\end{aligned}
$$

EXERCISE 9.4

1. A point E is taken on the side $B C$ of a parallelogram $A B C D$. AE and DC are produced to meet at F . Prove that ar $(\triangle \mathrm{ADF})=\mathrm{ar}(\mathrm{ABFC})$.
Sol. Given: ABCD is a parallelogram. A point E is taken on the side BC . AE and DC are produced to meet at F .
To prove: $\operatorname{ar}(\triangle \mathrm{ADF})=\operatorname{ar}(\mathrm{ABFC})$
Proof: Since ABCD is a parallelogram and diagonal AC divides it into two triangles of equal area, we have

As $\mathrm{DC} \| \mathrm{AB}$, so $\mathrm{CF} \| \mathrm{AB}$
Since triangles on the same base and between the same parallels are equal in area, so we have

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{ACF})=\operatorname{ar}(\triangle \mathrm{BCF}) \tag{2}
\end{equation*}
$$

Adding (1) and (2), we get

$$
\left.\begin{array}{rl}
& \operatorname{ar}(\triangle \mathrm{ADC})+\operatorname{ar}(\triangle \mathrm{ACF})
\end{array}=\operatorname{ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{BCF})\right)
$$

Hence, proved.
2. The diagonals of a parallelogram $A B C D$ intersect at a point O. Through O , a line is drawn to intersect AD at P and BC at Q . Show that PQ divides the parallelogram into two parts of equal area.
Sol. $\because \mathrm{AC}$ is a diagonal of the $\|$ gm ABCD

$\therefore \quad \operatorname{ar}(\triangle \mathrm{ACD})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
Now, in $\triangle \mathrm{AOP}$ and $\triangle \mathrm{COQ}$

$$
\begin{array}{rlrl}
\mathrm{AO} & =\mathrm{CO} \quad[\because \text { Diagonals of a } \| \text { gm bisect each other }] \\
\angle \mathrm{AOP} & =\angle \mathrm{COQ} & & {[\text { Vert. Opp. } \angle s]} \\
\angle \mathrm{OAP} & =\angle \mathrm{OCQ} & & {[\text { Alt. } \angle s ; \mathrm{AB} \| \mathrm{CD}]} \\
\therefore \quad \Delta \mathrm{AOP} & \cong \Delta \mathrm{COQ} & & {[\text { By ASA Cong. rule] }}
\end{array}
$$

Hence, ar $(\triangle \mathrm{AOP})=\operatorname{ar}(\triangle \mathrm{COQ})$ [Cong. area axiom] ...(2)
Adding ar (quad. AOQD) to both sides of (2), we get
$\operatorname{ar}($ quad. $A O Q D)+\operatorname{ar}(\triangle A O P)=\operatorname{ar}(q u a d . A O Q D)+\operatorname{ar}(\triangle C O Q)$
$\Rightarrow \quad \operatorname{ar}(q u a d . A P Q D)=\operatorname{ar}(\triangle A C D)$
But, $\quad \operatorname{ar}(\triangle \mathrm{ACD})=\frac{1}{2}$ ar $(\| \mathrm{gm} \mathrm{ABCD})$
[From(1)]

Hence, $\operatorname{ar}($ quad. APQD$)=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$.
3. The medians BE and CF of a triangle ABC intersect at G . Prove that the area of $\triangle \mathrm{GBC}=$ area of the quadrilateral AFGE .
Sol. BE and CF are medians of a triangle ABC intersect at G . We have to prove that the ar $(\triangle \mathrm{GBC})=$ area of the quadrilateral AFGE.
Since median (CF) divides a triangle into two triangles of equal area, so we have

$$
\begin{align*}
\operatorname{ar}(\triangle \mathrm{BCF}) & =\operatorname{ar}(\Delta \mathrm{ACF}) \\
\Rightarrow \quad \operatorname{ar}(\Delta \mathrm{GBF})+\operatorname{ar}(\Delta \mathrm{GBC}) & =\operatorname{ar}(\mathrm{AFGE})+\operatorname{ar}(\Delta \mathrm{GCE}) \tag{1}
\end{align*}
$$

Since median (BE) divides a triangle into two triangle of equal area, so we have

$$
\begin{equation*}
\Rightarrow \quad \operatorname{ar}(\Delta \mathrm{GBF})+\operatorname{ar}(\mathrm{AFGE})=\operatorname{ar}(\Delta \mathrm{GCE})+\operatorname{ar}(\Delta \mathrm{GBC}) \tag{2}
\end{equation*}
$$

Subtracting (2) from (1), we get

$$
\begin{array}{rlrl}
& & \operatorname{ar}(\Delta \mathrm{GBC})-\operatorname{ar}(\mathrm{AFGE}) & =\operatorname{ar}(\Delta \mathrm{AFGE})-\operatorname{ar}(\Delta \mathrm{GBC}) \\
\Rightarrow & \operatorname{ar}(\Delta \mathrm{GBC})+\operatorname{ar}(\Delta \mathrm{GBC}) & =\operatorname{ar}(\mathrm{AFGE})+\operatorname{ar}(\mathrm{AFGE}) \\
\Rightarrow & & 2 \operatorname{ar}(\Delta \mathrm{GBC}) & =2 \operatorname{ar}(\mathrm{AFGE}) \\
\text { Hence, } & \operatorname{ar}(\Delta \mathrm{GBC}) & =\operatorname{ar}(\mathrm{AFGE})
\end{array}
$$

4. In the given figure, $C D \| A E$ and $C Y \| B A$. Prove that ar $(\triangle C B X)=\operatorname{ar}(\triangle A X Y)$.

Sol. $C D \| A E$ and $C Y \| B A$. We have to prove that ar $(\triangle C B X)=\operatorname{ar}(\triangle A X Y)$.
Since triangle on the same base and between the same parallels are equal in area, so we have

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ABY}) \\
& \Rightarrow \quad \operatorname{ar}(\triangle \mathrm{CBX})+\operatorname{ar}(\triangle \mathrm{ABX})=\operatorname{ar}(\triangle \mathrm{ABX})+\operatorname{ar}(\triangle \mathrm{AXY}) \\
& \text { Hence, } \\
& \operatorname{ar}(\triangle \mathrm{CBX})=\operatorname{ar}(\triangle \mathrm{AXY})
\end{aligned}
$$

[Cancelling ar ($\triangle \mathrm{ABX})$ from both sides]
5. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}, \mathrm{DC}=30 \mathrm{~cm}$ and $A B=50 \mathrm{~cm}$. If X and Y are respectively the mid-points of $A D$ and $B C$, prove that

$$
\operatorname{ar}(\mathrm{DCYX})=\frac{7}{9} \operatorname{ar}(\mathrm{XYBA}) .
$$

Sol. In $\triangle \mathrm{MBY}$ and $\triangle \mathrm{DCY}$, we have

$$
\begin{array}{lr}
\angle 1=\angle 2 & \quad[\text { Vertically opposite } \angle s] \\
\angle 3=\angle 4 & {[\because \mathrm{AB} \| \mathrm{DC} \text { and alt. } \angle s \text { are equal] }}
\end{array}
$$

So,
$\mathrm{MB}=\mathrm{DC}=30 \mathrm{~cm}$
[CPCT]
Now,
$\mathrm{AM}=\mathrm{AB}+\mathrm{BM}=50 \mathrm{~cm}+30 \mathrm{~cm}=80 \mathrm{~cm}$
In $\triangle A D M$, we have $X Y=\frac{1}{2} \mathrm{AM}=\frac{1}{2} \times 80 \mathrm{~cm}=40 \mathrm{~cm}$
As $A B\|X Y\| D C$ and X and Y are the mid-points of $A D$ and $B C$, so height of trapezium DCYX and XYBA are equal. Let the equal height be $h \mathrm{~cm}$.

$$
\frac{\operatorname{ar}(\mathrm{DCYX})}{\operatorname{ar}(\mathrm{XYBA})}=\frac{\frac{1}{2}(30+40) \times h}{\frac{1}{2} \times(40+50) \times h}=\frac{70}{90}=\frac{7}{9}
$$

Hence, $\operatorname{ar}(D C Y X)=\frac{7}{9} \operatorname{ar}(X Y B A)$
6. In $\triangle A B C$, if L and M are the points on $A B$ and $A C$, respectively such that $\mathrm{LM} \| \mathrm{BC}$. Prove that ar $(\triangle \mathrm{LOB})=\operatorname{ar}(\triangle \mathrm{MOC})$.

Sol. Since triangles on the same base and between the same parallels are equal in area, so we have

$$
\therefore \quad \operatorname{ar}(\Delta \mathrm{LBM})=\operatorname{ar}(\Delta \mathrm{LCM})
$$

[$\Delta \mathrm{LBM}$ and $\Delta \mathrm{LCM}$ are on the same base LM and between the same parallels LM and BC]

```
\(\therefore \quad \operatorname{ar}(\Delta \mathrm{LBM})=\operatorname{ar}(\Delta \mathrm{LCM})\)
\(\Rightarrow \quad \operatorname{ar}(\Delta \mathrm{LOM})+\operatorname{ar}(\Delta \mathrm{LOB})=\operatorname{ar}(\Delta \mathrm{LOM})+\operatorname{ar}(\Delta \mathrm{MOC})\)
Hence,
    \(\operatorname{ar}(\Delta \mathrm{LOB})=\operatorname{ar}(\triangle \mathrm{MOC})\)
```

[Cancelling ar ($\triangle \mathrm{LOM}$) from both sides]
7. In the given figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q . Prove that ar $(\mathrm{ABCDE})=\operatorname{ar}(\triangle \mathrm{APQ})$.

Sol. BP $\| \mathrm{AC}$ and $\mathrm{AD} \| \mathrm{EQ}$,
Since triangles on the same base and between the same parallels are equal in area

$$
\begin{array}{lrl}
& \operatorname{ar}(\triangle \mathrm{ABC}) & =\operatorname{ar}(\triangle \mathrm{APC}) \\
\text { and } & \operatorname{ar}(\triangle \mathrm{ADE}) & =\operatorname{ar}(\triangle \mathrm{ADQ}) \tag{2}
\end{array}
$$

Adding (1) and (2), we get

$$
\operatorname{ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{APC})+\operatorname{ar}(\triangle \mathrm{ADQ})
$$

Adding ar $(\triangle A C D)$ to both sides, we get

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{ADE})+\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{APC}) \\
&+\operatorname{ar}(\triangle \mathrm{ADQ})+\operatorname{ar}(\triangle \mathrm{ACD}) \\
& \operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\triangle \mathrm{APQ})
\end{aligned}
$$

Hence,
8. If the medians of a $\triangle A B C$ intersect at G, show that
$\operatorname{ar}(\mathrm{AGB})=\operatorname{ar}(\mathrm{AGC})=\operatorname{ar}(\mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\mathrm{ABC})$.
Sol. Given : Medians AE, BF and $C D$ of $\triangle A B C$ intersect at G. To prove:

$$
\begin{aligned}
\operatorname{ar}(\triangle \mathrm{AGB}) & =\operatorname{ar}(\Delta \mathrm{AGC}) \\
& =\operatorname{ar}(\Delta \mathrm{BGC}) \\
& =\frac{1}{3} \operatorname{ar}(\Delta \mathrm{ABC})
\end{aligned}
$$

Construction: Draw $\mathrm{BP} \perp \mathrm{EG}$.
Proof: $A G=\frac{2}{3} \mathrm{AE}$
 $[\because$ Centroid divides the median in the ratio $2: 1$]

Now, $\operatorname{ar}(\Delta \mathrm{AGB})=\frac{1}{2} \times \mathrm{AG} \times \mathrm{BP}$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{2}{3} \mathrm{AE} \times \mathrm{BP} \\
& =\frac{2}{3} \times \frac{1}{2} \times \mathrm{AE} \times \mathrm{BP} \\
& =\frac{2}{3} \operatorname{ar}(\triangle \mathrm{ABE}) \\
& =\frac{2}{3} \times \frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABC})[\because \text { Median divides a triangle into } \\
& =\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})
\end{aligned}
$$

Similarly, $\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
$\therefore(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\Delta \mathrm{ABC})$
Hence, proved.
9. In given figure, X and Y are the mid-points of AC and AB respectively, $\mathrm{OP} \| \mathrm{BC}$ and CYQ and BXP are straight lines. Prove that $\operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle A C Q)$.

Sol. In triangle $A B C, X$ and Y are the mid-points of $A B$ and $A C$.
$\therefore \quad \mathrm{XY} \| \mathrm{BC} \quad$ [By mid-point theorem]
Since triangles on the same base (BC) and between the same parallels $(\mathrm{XY} \| \mathrm{BC})$ are equal in area
$\therefore \quad \operatorname{ar}(\triangle \mathrm{BYC})=\operatorname{ar}(\triangle \mathrm{BXC})$
Subtracting ar ($\triangle \mathrm{BOC})$ from both sides, we get

Adding ar ($\triangle \mathrm{XOY}$) to both sides of (2), we get

$$
\operatorname{ar}(\triangle \mathrm{BOY})+\operatorname{ar}(\triangle \mathrm{XOY})=\operatorname{ar}(\Delta \mathrm{COX})+\operatorname{ar}(\triangle \mathrm{XOY})
$$

$$
\begin{equation*}
\Rightarrow \quad \operatorname{ar}(\Delta \mathrm{BXY})=\operatorname{ar}(\Delta \mathrm{CXY}) \tag{3}
\end{equation*}
$$

Now, quad. XYAP and XYQA are on the same base XY and between the same parallels XY and PQ.

$$
\begin{align*}
& \operatorname{ar}(\triangle \mathrm{BYC})-\operatorname{ar}(\triangle \mathrm{BOC})=\operatorname{ar}(\triangle \mathrm{BXC})-\operatorname{ar}(\triangle \mathrm{BOC}) \tag{1}\\
& \Rightarrow \quad \operatorname{ar}(\triangle \mathrm{BOY})=\operatorname{ar}(\triangle \mathrm{COX}) \tag{2}
\end{align*}
$$

$$
\therefore \quad \begin{aligned}
& \operatorname{ar}(\mathrm{XYAP})=\operatorname{ar}(\mathrm{XYQA}) \\
& \text { Adding }(3) \text { and }(4), \text { we get } \\
& \operatorname{ar}(\triangle \mathrm{BXY})+\operatorname{ar}(\mathrm{XYAP})=\operatorname{ar}(\triangle \mathrm{CXY})+\operatorname{ar}(\mathrm{XYQA}) \\
& \text { Hence, } \quad \operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{ACQ})
\end{aligned}
$$

10. In the given figure, ABCD and AEFD are two parallelograms. Prove that ar $(\triangle \mathrm{PEA})=\operatorname{ar}(\triangle \mathrm{QFD})$.
[Hint: Join PD]

Sol. ABCD and AEFD are two parallelograms.
We have to prove that ar $(\triangle \mathrm{PEA})=\operatorname{ar}(\triangle \mathrm{QFD})$. Join PD.
In \triangle PEA and $\triangle \mathrm{QFD}$, we have

$$
\begin{array}{rlrl}
\angle \mathrm{APE} & =\angle \mathrm{DQF} & {[\because \text { Corresp. } \angle s \text { are equal as } \mathrm{AB} \| \mathrm{CD}]} \\
\angle \mathrm{AEP}=\angle \mathrm{DFQ} & {[\because \text { Corresp. } \angle s \text { are equal as AE } \| \mathrm{DF}]} \\
\mathrm{AE} & =\mathrm{DF} & {[\because \text { Opposite sides of a } \| \text { gm are equal] }} \\
\Delta \mathrm{PEA} \cong \triangle \mathrm{QFD} & {[\text { By AAS Cong. rule] }}
\end{array}
$$

$\therefore \quad \triangle \mathrm{PEA} \cong \triangle \mathrm{QFD}$
Hence, $\operatorname{ar}(\triangle \mathrm{PEA})=\operatorname{ar}(\triangle \mathrm{QFD})$.

