#### JEE Main 2023 (Memory based)

#### 25 January 2023 - Shift 1

Answer & Solutions

# PHYSICS

- **1.** A car moving with constant speed of 2 m/s in circle having radius *R*. A pendulum is suspended from the ceiling of car. Find the angle made by the pendulum with the vertical. Take R = 8/15 m and  $g = 10 m/s^2$ .
  - A. 30°
  - **B**. 53°
  - **C**. 37°
  - D. 60°

#### Answer (C)

### Solution:

| $T\sin\theta = \frac{mv}{R}$    | 2                                    |                |
|---------------------------------|--------------------------------------|----------------|
| $T\cos\theta = mg$              | 1                                    |                |
| $\tan\theta = \frac{v^2}{Rg} =$ | $\frac{4}{\frac{8}{15} \times 10} =$ | $=\frac{3}{4}$ |
| $\theta = 37^{\circ}$           |                                      |                |



- **2.** A particle is dropped inside a tunnel of the earth about any diameter. Particle starts oscillating, with time period *T*. (R = Radius of earth, g = acceleration due to gravity on earth's surface). Then find *T*.
  - A.  $T = 2\pi \sqrt{\frac{R}{g}}$ B.  $T = \pi \sqrt{\frac{R}{g}}$ C.  $T = 2\pi \sqrt{\frac{2R}{g}}$ D.  $T = 2\pi \sqrt{\frac{3R}{g}}$



Restoring force, 
$$F = -\frac{GMmr}{R^3}$$
  
 $m\frac{dv}{dt} = -\left(\frac{GMm}{R^3}\right)r$   
 $\frac{dv}{dt} = -\left(\frac{GM}{R^3}\right)r = -\left(\frac{g}{R}\right)r$   
 $\omega = \sqrt{\frac{g}{R}}$   
 $T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{R}{g}}$ 



3. A massless rod is arranged as shown:

Find the tension in the string. (Take  $g = 10 m/s^2$ .)

- A. 320 N
- B. 640 N
- C. 160 N
- D. 480 N

## Answer (A)

#### Solution:

Balancing the torque on the rod about the point of contact with the wall:

 $(T\sin 30^\circ) \times 40 = (mg) \times (40 + 40)$ 

T = 320 N

- 4. A Carnot engine working between a source and a sink at 200 K has efficiency of 50 %. Another Carnot engine working between the same source and another sink with unknown temperature *T* has efficiency of 75 %. The value of *T* is equal to
  - A. 400 K
  - B. 300 K
  - C. 200 K
  - D. 100 K

## Answer (D)

### Solution:

Let the source temperature of first engine is *T*.

$$\eta = 1 - \frac{200}{T} = \frac{50}{100}$$
$$\Rightarrow T = 400 K$$

Let the source temperature of second engine is T.

$$\eta = 1 - \frac{T'}{400} = \frac{75}{100}$$
$$\Rightarrow T' = 100 K$$



5. Mark the option correctly matching the following columns with appropriate dimensions.

| Column-1          | Column-2              |
|-------------------|-----------------------|
| A-Surface Tension | $P - [ML^{-1}T^{-2}]$ |
| B-Pressure        | $Q - [MT^{-2}]$       |
| C-Viscosity       | $R - [MLT^{-1}]$      |
| D-Impulse         | $S - [ML^{-1}T^{-1}]$ |

 $\mathsf{A}. \quad A - Q, B - P, C - R, D - S$ 

- $\mathsf{B}. \quad A-Q, B-P, C-S, D-R$
- $\mathsf{C}. \quad A-S, B-Q, C-P, D-R$
- $\mathsf{D}. \quad A-R, B-P, C-Q, D-S$

## Answer (B)

#### Solution:

$$[Surface tension] = \left[\frac{F}{L}\right] = [MT^{-2}]$$
$$[Pressure] = \left[\frac{F}{A}\right] = \frac{[MLT^{-2}]}{[L^2]} = [ML^{-1}T^{-2}]$$
$$[Viscosity] = \left[\frac{F}{rv}\right] = \frac{[MLT^{-2}]}{[L.LT^{-1}]} = [ML^{-1}T^{-1}]$$
$$[Impulse] = [Ft] = [MLT^{-1}]$$

**6.** In the series sequence of two engines  $E_1$  and  $E_2$  as shown.  $T_1 = 600K$  and  $T_2 = 300K$ . It is given that both the engines working on Carnot principle have same efficiency, then temperature *T* at which exhaust of  $E_1$  is fed into  $E_2$  is equal to  $300\sqrt{n} K$ . Value of *n* is equal to \_\_\_\_\_.

#### Answer (2.0)

## Solution:

| $\eta_1 = 1 - \frac{T_1}{600}$                      |
|-----------------------------------------------------|
| $\eta_2 = 1 - \frac{300}{T}$                        |
| Given: $\eta_1 = \eta_2$                            |
| $\Rightarrow \frac{T}{600} = \frac{300}{T}$         |
| $\Rightarrow T = \sqrt{180000}  K = 300\sqrt{2}  K$ |
| $\Rightarrow n = 2$                                 |



**7.** A solenoid of length 2 *m*, has 1200 *turns*. The magnetic field inside the solenoid, when 2 *A* current is passed through it is  $N \times \pi \times 10^{-5}$  *T*. Find the value of *N*. (Diameter of solenoid is 0.5 *m*)

#### Answer (48.0)

#### Solution:

Magnetic field inside solenoid =  $\mu_o ni$ where n = Number of turns per unit length = 1200/2 = 600 turns/m

$$B_{solenoid} = \mu_o ni = (4\pi \times 10^{-7} \times 600 \times 2) T$$
  
=  $8\pi \times 10^{-7} \times 600 T$   
=  $48\pi \times 10^{-5} T$ 

**8.** Consider a network of resistors as shown. Find the effective resistance  $(in \Omega)$  across A and B.



## Answer (5.0)

### Solution:

Effectively, the network is



**9.** Find the ratio of density of  $Oxygen(0_8^{16})$  to the density of  $Helium(He_2^4)$  at STP.

## Answer (8.0)

#### Solution:

We know,

$$\frac{P}{\rho} = \frac{RT}{M_0}$$
$$\Rightarrow \frac{\rho_1}{\rho_2} = \frac{M_1}{M_2} = \frac{32}{4} = 8$$

**10.** Consider the following two *LC* circuit.



Then find  $\omega_1/\omega_2$ , where  $\omega_1$  and  $\omega_2$  are resonance frequencies of the two circuits.

#### Answer (4.0)

#### Solution:

$$\omega_1 = \frac{1}{\sqrt{LC}}$$
$$\omega_2 = \frac{1}{\sqrt{8L \times 2C}} = \frac{1}{4\sqrt{LC}}$$
$$\frac{\omega_1}{\omega_2} = 4$$

- **11.** A car moving on a straight-line travels in same direction half of the distance with uniform velocity  $v_1$  and other half of the distance with uniform velocity  $v_2$ . Average velocity of the car is equal to
  - A.  $2v_1v_2/(v_1 + v_2)$ B.  $(v_1 + v_2)/2$ C.  $v_1 + v_2$ D.  $\sqrt{(v_1 + v_2)}$

## Answer (A)

## Solution:



Time to travel:

$$t_{1} = \frac{x}{2v_{1}} \quad and \quad t_{2} = \frac{x}{2v_{2}}$$
  
So,  
$$v_{avg} = \frac{\text{Total distance}}{\text{Total Time}}$$
  
$$v_{avg} = \frac{x}{t_{1} + t_{2}}$$
  
$$v_{avg} = \frac{x}{\frac{x}{2v_{1}} + \frac{x}{2v_{2}}}$$
  
$$v_{avg} = \frac{2v_{1}v_{2}}{v_{1} + v_{2}}$$

12. If T is the temperature of a gas, then RMS velocity of the gas molecules is proportional to

A.  $T^{1/2}$ B.  $T^{-1/2}$ 

- **C**. *T*
- D. *T*<sup>2</sup>

#### Answer (A)

We know that:

$$v_{rms} = \sqrt{\frac{3RT}{M_0}}$$
  
So,  
 $v_{rms} \propto \sqrt{T}$ 

- **13.** The period of a pendulum at earth's surface is *T*. Find the time period of the pendulum at distance (from centre) which is twice the radius of earth.
  - A. T/4
  - B. 4*T*
  - C. *T*/2
  - D. 2*T*

#### Answer (D)

#### Solution:

We know that :

$$T = 2\pi \sqrt{\frac{l}{g}}$$
Case 1:

$$T = 2\pi \sqrt{\frac{l}{GM/R^2}}$$

Case 2:

$$T' = 2\pi \sqrt{\frac{l}{GM/4R^2}}$$
  
So,  
$$\frac{T'}{T} = \frac{2}{1} \Rightarrow T' = 2T$$

- **14.** Let  $I_{cm}$  be the moment of Inertia of disc passing through center and perpendicular to its plane.  $I_{AB}$  be the moment of inertia about axis *AB* that is in the plane of disc and  $\frac{2r}{3}$  distance from center. Find  $\frac{I_{cm}}{I_{AB}}$ ?
  - A. 1/4
  - B. 18/25
  - C. 9/17
  - D. 1/2

Answer (B)

Moment of Inertia,  $I_{cm} = \frac{Mr^2}{2}$  (Perpendicular to plane)  $I_{cm}(in \, plane) = \frac{Mr^2}{4}$   $I_{AB} = \frac{Mr^2}{4} + M\left(\frac{2}{3}r\right)^2$   $I_{AB} = \frac{(9+16)Mr^2}{36} = \frac{25}{36}Mr^2$  $\frac{I_{cm}(\text{Perpendicular})}{I_{AB}} = \frac{\frac{1}{2}Mr^2}{\frac{25}{36}Mr^2} = \frac{18}{25}$ 

- **15.** Temperature of hot soup in a bowl goes  $98^{\circ}C$  to  $86^{\circ}C$  in  $2 \min$ . The temperature of surrounding is  $22^{\circ}C$ . Find the time taken for the temperature of soup to go from  $75^{\circ}C$  to  $69^{\circ}C$ . (Assume Newton's law of cooling is valid)
  - A. 1 min
  - B. 1.4 min
  - C. 2 min
  - D. 3.2 min

#### Answer (B)

#### Solution:

We have,

$$\frac{\Delta\theta}{\Delta t} = -K\left(\frac{\theta_1 + \theta_2}{2} - \theta_0\right)$$

Given, 
$$\theta_0 = 22^{\circ}C$$

$$\frac{98-86}{2} = -K\left(\frac{98+86}{2}-22\right)\dots(1)$$
$$\frac{75-69}{t_2} = -K\left(\frac{75+69}{2}-22\right)\dots(2)$$

From (1) and (2)  $t_2 = \frac{70}{50} = 1.4 \text{ min}$ 

- **16.** Electric field is applied along +y direction. A charged particle is travelling along  $-\hat{k}$ , undeflected. Then magnetic field in the region will be along?
  - Α. î
  - B. −î
  - C. ĵ
  - D.  $-\hat{k}$



## Answer (A)

## Solution:

If the charged particle is moving in both uniform electric and magnetic field with no deflection than force will be zero on charged particle.

$$q(\vec{E} + \vec{v} \times \vec{B}) = 0$$
$$(\vec{v} \times \vec{B}) = -\vec{E}$$
$$(v_0(-\hat{k}) \times \vec{B}) = -E_0\hat{j}$$

 $\vec{B}$  should be in  $\hat{i}$  direction to balance the electrostatic force on the charge particle. (Assuming the given charge to be positive.)

- **17.** When an electron is accelerated by 20 kV, its de-broglie wavelength is  $\lambda_0$ . If the electron is accelerated by 40 kV, find its de-Broglie wavelength.
  - A.  $2\lambda_0$
  - B.  $\frac{\lambda_0}{2}$
  - C.  $\sqrt{2}\lambda_0$
  - D.  $\frac{\lambda_0}{\sqrt{2}}$

## Answer (D)

Solution:

We know,

$$\begin{split} \lambda_0 &= \frac{h}{p} \\ \lambda_0 &= \frac{h}{\sqrt{2mK}} \\ \lambda_0 &= \frac{h}{\sqrt{2meV}} \end{split}$$

Since V doubles.

$$\frac{\lambda'}{\lambda_0} = \sqrt{\frac{V}{2V}} = \frac{1}{\sqrt{2}}$$
$$\lambda' = \frac{\lambda_0}{\sqrt{2}}$$

**18.** Find the equivalent resistance of the given circuit across the terminals of ideal battery.





In  $2^{nd}$  part of diagram a connecting wire is nullifying the resistance of parallel resistance thus their new resistance is zero. So, net resistance of circuit is 3R

- **19.** For an *AM* signal, it is given that  $f_{carrier} = 10 MHz \& f_{signal} = 5 kHz$ . Find the bandwidth of the transmitted signal.
  - A. 5 *kHz*
  - B. 10 kHz
  - C. 2.5 kHz
  - D. 20 MHz

## Answer (B)

## Solution:

Bandwidth of amplitude modulated wave is:

 $\Delta f = 2f_m = 10 \; kHz$ 

**20.** Let nuclear densities of  ${}^{4}_{2}He$  and  ${}^{40}_{20}Ca$  be  $\rho_1$  and  $\rho_2$  respectively. Find the ratio  $\frac{\rho_1}{\rho_2}$ .

- A. 1:10
- B. 10:1
- C. 1:1
- D. 1:2

## Answer (C)

## Solution:

We know radius,

$$R = R_o A^{\frac{1}{3}}$$
  
Density =  $\frac{\text{Mass}}{\text{Volume}}$   
$$Density = \frac{A}{\frac{4}{3}\pi \left(R_o A^{\frac{1}{3}}\right)^3} = \frac{1}{\frac{4}{3}\pi R_o^3}$$
  
Density is independent of A

$$\frac{\rho_1}{\rho_2} = 1 \Rightarrow \rho_1: \rho_2 = 1:1$$

**21.** A particle is projected with 0.5 *eV* kinetic energy in a uniform electric field  $\vec{E} = -10 \frac{N}{c} \hat{j}$  as shown in the figure. Find the angle particle made from the x – axis when it leaves  $\vec{E}$ .



- **22.** Find the ratio of acceleration due to gravity at an altitude h = R to the value at the surface of earth (where R=radius of earth)
  - A. 1/2
  - B. 1/4
  - C. 1/8
  - D. 1/6

## Answer (B)

## Solution:

We have,  $\frac{g_h}{g} = \left(\frac{R}{R+h}\right)^2$   $\frac{g_h}{g} = \left(\frac{R}{R+R}\right)^2 = \frac{1}{4}$  **23.** Statement 1: Photodiodes are operated in reverse biased.

Statement 2 : Current in forward biased is more than current in reverse bias in p - n diode.

- A. Both the statements are true and 2 is the correct explanation of 1.
- B. Both the statements are true and 2 is not the correct explanation of 1.
- C. Statement 1 is true and statement 2 is false.
- D. Statement 2 is true and statement 1 is false.

## Answer (B)

Sol. Statement 1 is true as photodiode is used in reverse bias to increase the sensitivity of diode current.

Statement 2 is true as diode provides greater resistance in reverse bias.

# CHEMISTRY

- 1. Radius of  $2^{nd}$  orbit of  $Li^{2+}$  ion is x, radius of  $3^{rd}$  orbit of  $Be^{3+}$  will be
  - A.  $\frac{27x}{16}$ B.  $\frac{16x}{27}$ C.  $\frac{4x}{3}$ D.  $\frac{3x}{4}$

## Answer (A)

Solution:

$$r_{Li^{2+}} = r_o \times \frac{2^2}{3} = \frac{4r_o}{3} = x \implies r_o = \frac{3x}{4}$$
$$r_{Be^{3+}} = r_o \times \frac{3^2}{4} = \frac{9r_o}{4} = \frac{9 \times 3 \times x}{4 \times 4} = \frac{27x}{16}$$

- 2. If X-atoms are present at alternate corners and at body centre of a cube and Y-atoms are present at 1/3<sup>rd</sup> of face centers then what will be the empirical formula?
  - A. X<sub>2.5</sub>Y
  - B.  $X_5Y_2$
  - C.  $X_{1.5}Y$
  - D.  $X_{3}Y_{2}$

#### Answer (D)

#### Solution:

No. of X – atoms per unit cell =  $1 + 4 \times \frac{1}{8} = \frac{3}{2}$ 

No. of Y – atoms per unit cell =  $2 \times \frac{1}{2} = 1$ 

Therefore, the empirical formula of the solid is  $X_3Y_2$ .

3. Which of the following option contains the correct match

| Table – I (Elements) | Table – II (Flame colour) |
|----------------------|---------------------------|
| A. K                 | P. Violet                 |
| B. Ca                | Q. Brick Red              |
| C. Sr                | R. Apple Green            |
| D. Ba                | S. Crimson Red            |

 $A. \quad A-P, \ B-Q, \ C-S, \ D-R$ 

- $B. \quad A-Q, B-P, C-S, D-R$
- $C. \quad A-R,\,B-S,\,C-P,\,D-Q$
- D. A S, B R, C Q, D P

- K Violet
- Ca Brick Red
- Sr Crimson Red
- Ba Apple Green
- 4. Match the following

| List - I                                             | List - II                       |
|------------------------------------------------------|---------------------------------|
| A. <i>Pb</i> <sup>2+</sup> , <i>Cu</i> <sup>2+</sup> | 1. $H_2S$ in dil HCl            |
| B. <i>Fe</i> <sup>3+</sup> , <i>Al</i> <sup>3+</sup> | 2. $NH_4Cl$ with $(NH_4)_2CO_3$ |
| C. Ni <sup>2+</sup> , Co <sup>2+</sup>               | 3. $H_2S$ in dil $NH_4OH$       |
| D. <i>Ca</i> <sup>2+</sup> , <i>Ba</i> <sup>2+</sup> | 4. $NH_4Cl$ with $NH_4OH$       |

- $A. \quad A-1, \, B-2, \, C-3, \, D-4$
- B. A 1, B 4, C 3, D 2
- $C. \ \ A-4, \, B-3, \, C-2, \, D-1$
- $D. \ \ A-2,\,B-1,\,C-4,\,D-3$

## Answer (B)

## Solution:

 $Pb^{2+}$  and  $Cu^{2+}$  will precipitate as PbS and CuS respectively by passing  $H_2S$  gas in presence of *dil*. *HCl*.  $Fe^{3+}$  and  $Al^{3+}$  will precipitate as  $Fe(OH)_3$  and  $Al(OH)_3$  respectively by adding  $NH_4Cl$  and  $NH_4OH$   $Ni^{2+}$  and  $Co^{2+}$  will precipitate as *NiS* and *CoS* respectively by passing  $H_2S$  in presence of *dil*  $NH_4OH$ .  $Ca^{2+}$  and  $Ba^{2+}$  will precipitate as  $CaCO_3$  and  $BaCO_3$  respectively by adding  $NH_4Cl$  and  $(NH_4)_2CO_3$ .

- 5. Which of the following is correct about antibiotics
  - A. Antibiotics are the substances that promote the growth of micro-organisms
  - B. Penicillin has bacteriostatic effect
  - C. Erythromycin has bactericidal effect
  - D. They are synthesised artificially

## Answer (D)

Solution: Antibiotics are synthesised artificially.

6. Consider the following sequences of the reactions

 $NO_2 \xrightarrow{hv} A + B$   $B + O_2 \rightarrow O_3(g)$ A can be?

- A. *N*<sub>2</sub>*O*
- B. *NO*
- C.  $N_2O_3$
- D. *N*<sub>2</sub>

### Answer (B)

## Solution:

$$NO_2 \xrightarrow{hv} NO(g) + O(g)$$
(A) (B)
$$O(g) + O_2(g) \rightarrow O_3(g)$$
(B)

- 7. Correct order of basic strength in aqueous solution for
  - CH<sub>3</sub> NH<sub>2</sub>
     CH<sub>3</sub> NH CH<sub>3</sub>
     CH<sub>3</sub> N(CH<sub>3</sub>) CH<sub>3</sub>
     NH<sub>3</sub>
  - B. 3>2>1>34
    C. 4>2>1>3
    D. 2>4>3>1

## Answer (A)

## Solution:

Basic strength  $\propto$  Availability of lone pairs on Nitrogen atom

The correct order of basic strength in aqueous medium is

$$\begin{array}{ccc} CH_3-NH-CH_3>CH_3-NH_2>CH_3-N(CH_3)-CH_3>NH_3\\ (2) & (1) & (3) & (4) \end{array}$$

The availability of lone pair on N-atom in case of ammonia and alkyl amines in aqueous medium depend on three factors

- Electron donating effects: + I effect is present in case of alkyl amines but not in case of ammonia and availability of electrons on N – atom ∝ +I effect
- Solvation: More is the solvation less will be the availability of electrons on N-atom. Extent of solvation ∝ no. of H-atoms directly attach to N-atom
- Steric Crowding: More is no. of alkyl groups more is the steric crowding and less will be the availability of electrons on N-atom
- **8.** Which Graph graph is correct for Isothermal process at  $T_1$ ,  $T_2 \& T_3$  if  $(T_3 > T_2 > T_1)$







According to Boyle Law  $P \propto \frac{1}{V}$ 

The graph must be hyperbola.

As we know, PV = nRT

So as increase the Temperature the PV graph area increases



As  $(V_3 > V_2 > V_1)$  for fixed P =  $(T_1 > T_2 > T_1)$ 

$$= (T_3 > T_2 > T_1)$$

And the correct option is (D)

**9.** An athlete is given 100g of glucose energy equivalent to 1560KJ to utilise 50% of this gained energy in an event. Enthalpy of evaporation of  $H_20$  is 44KJ/mol. In order to avoid storage of energy in the body the mass of water (in g) he would perspire is: (Round off the nearest Integer)

## Answer (319)

## Solution:

Given 100 g of glucose yields 1560 KJ of energy. 50% of 1560 KJ that is 780 KJ is used to perspire water To perspire 1 mol of water that is 18 g of water 44 KJ energy is required Therefore, Moles of water evaporated =  $\frac{780}{44}$  mol

Weight of water evaporated =  $\frac{780}{44} \times 18 = 319 g$ 

(Assuming water is contained in the body)

**10.** Which of the following option contains the correct graph between  $\pi/c$  and *c* at constant temperature (Where  $\pi$  is osmotic pressure and c is concentration of the solute)





### Answer (A)

#### Solution:



The value of  $\frac{\pi}{c}$  is constant at constant temperature

11. How many of the following ions/elements has the same value of spin magnetic moment?

V<sup>3+</sup>, Cr<sup>3+</sup>, Fe<sup>2+</sup>, Ni<sup>2+</sup>

## Answer (2)

## Solution:

 $V^{3+}$  -  $d^2 - 2$  unpaired electrons

 $Cr^{3+}$  -  $d^3 - 3$  unpaired electrons

Fe<sup>2+</sup> - d<sup>6</sup> - 4 unpaired electrons

Ni<sup>2+</sup> - d<sup>8</sup> - 2 unpaired electrons

 $\mathsf{V}^{3\text{+}}$  and  $\mathsf{Ni}^{2\text{+}}$  has the same number of unpaired electrons and hence has the same value of spin magnetic Moment.

12. How many of the following complexes is (are) paramagnetic?

 $[Fe(CN)_{6}]^{3\text{-}}, [Fe(CN)_{6}]^{4\text{-}}, [NiCl_{4}]^{2\text{-}}, [Ni(CN)_{4}]^{2\text{-}}, [CuCl_{4}]^{2\text{-}}, [Cu(CN)_{4}]^{3\text{-}}, [Cu(H_{2}O)_{4}]^{2\text{+}}, [Cu(H_{2}O)_{4}]^{2\text{-}}, [Cu(H_{2}O)_{4}]^{$ 

## Answer (4)

- $$\label{eq:constraint} \begin{split} & [Fe(CN)_6]^{3^{-}} d^5 paramagnetic \\ & [Fe(CN)_6]^{4^{-}} d^6 diamagnetic \\ & [NiCl_4]^{2^{-}} d^8 paramagnetic \\ & [Ni(CN)_4]^{2^{-}} d^8 diamagnetic \\ & [CuCl_4]^{2^{-}} d^9 paramagnetic \\ & [Cu(CN)_4]^{3^{-}} d^{10} diamagnetic \\ & [Cu(H_2O)_4]^{2^{+}} d^9 paramagnetic \end{split}$$
- 13. Which of the following shows least reactivity towards nucleophilic substitution reaction?



## Answer (C)

#### Solution:

Aryl halides containing EWG at ortho or para position are more reactive towards nucleophilic substitution. reaction than meta isomer.

**14.** For a first order reaction,  $A \rightarrow B$ ;  $t_{1/2}$  is 30 minutes. Then find the time in minutes required for 75% completion of reaction?

## Answer (60 minutes)

#### Solution:

 $t_{75\%} = t_{1/4} = 2 \times t_{1/2} = 2 \times 30 \text{ minutes} = 60 \text{ minutes}$ 



B. A - 1; B - 4; C - 3; D - 2

- C. A-2; B-3; C-4; D-1
- $D. \ \ A-1 \ \, ; \ B-3 \ \, ; \ C-2 \ \, ; \ D-4$

**16.** Consider the following conversion.



Which of the following option contains the correct structure of 'A'.



Answer (B)

Solution:



**17.** Consider the following sequence of reaction.



Which of the following option contains the correct structure?





Solution:



18. Identify the correct sequence of reactants for the following conversion.

- A. Al<sub>2</sub>O<sub>3</sub>/Cr<sub>2</sub>O<sub>3</sub>, CrO<sub>2</sub>Cl<sub>2</sub>/H<sub>3</sub>O<sup>+</sup>, Conc. NaOH, H<sub>3</sub>O<sup>+</sup>
- B. Al<sub>2</sub>O<sub>3</sub>/Cr<sub>2</sub>O<sub>3</sub>, CrO<sub>2</sub>Cl<sub>2</sub>/H<sub>3</sub>O<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, Conc. NaOH
- C.  $CrO_2Cl_2, Al_2O_3$ , Conc. NaOH,  $H_3O^+$
- D. Sn/HCl, Conc. NaOH, CrO<sub>2</sub>Cl<sub>2</sub>, HNO<sub>3</sub>

#### Answer (A)

#### Solution:



- **19.** Thionyl chloride on reaction with white phosphorous gives compound A. A on hydrolysis gives compound B which is dibasic. Identify A and B.
  - A.  $A PCl_5, B = H_3PO_2$ B.  $A - P_4O_6, B = H_3PO_4$
  - $\mathsf{C.} \quad A POCl_3, B = H_3PO_4$
  - $\mathsf{D.} \quad A PCl_3, B = H_3PO_3$

## Answer (D)

#### Solution:

 $P_4 + 8SOCl_2 \rightarrow 4PCl_3 + 4SO_2 + 2S_2Cl_2$ (A)  $PCl_3 + H_2 O \rightarrow H_3 PO_3$ (B)

- 20. The correct decreasing order of positive electron gain enthalpy for the following inert gases. He, Ne, Kr, Xe
  - A. He > Ne > Kr > Xe
  - $\mathsf{B.} \quad He > Ne > Xe > Kr$
  - C. He > Xe > Ne > Kr
  - D. Ne > Kr > Xe > He

### Answer (D)

**Solution:** The correct order is, Ne > Kr > Xe > He

**21.** Consider the following cell represent:

 $Pt/H_2/H^+ // Fe^{+3}/Fe^{+2}$ (1 atm) (1 M)

Then Find the ratio of concentration of  $Fe^{+2}$  to  $Fe^{+3}$ ? [Given  $E_{cell} = 0.712$ ,  $E^{0}_{cell} = 0.771$ ]

## Answer (10)

Solution:

$$\begin{split} E_{Cell} &= E_{cell}^{0} - \frac{0.059}{n} \log \left[ \frac{[Fe^{2+}][H^{+}]}{[Fe^{3+}]} \right]^{2} \\ \Rightarrow 0.712 &= 0.771 - \frac{0.059}{2} \times 2 \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \\ \Rightarrow -0.059 &= -0.059 \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \\ \Rightarrow \frac{[Fe^{2+}]}{[Fe^{3+}]} &= 10 \end{split}$$

- 22. Which of the following complexes is paramagnetic in nature?
  - A.  $[Fe(NH_3)_2(CN)_4]^{2-1}$
  - B.  $[Ni(CN)_4]^{2-}$
  - C.  $[Ni(H_20)_6]^{2+}$
  - D.  $[Co(NH_3)_4Cl_2]^+$



## Solution:



Complex is diamagnetic.

2.  $[Ni(CN)_4]^{2-}$  dsp<sup>2</sup> hybridisation, so it is diamagnetic 3.  $[Ni(H_2 O)_6]^{2+}$  sp<sup>3</sup>d<sup>2</sup> hybridisation, so it is paramagnetic 4.  $[Co(NH_3)_4Cl_2]^+$  d<sup>2</sup>sp<sup>3</sup> hybridisation, so it is diamagnetic So correct answer is option (C)

**1.** 
$$\tan^{-1}\left(\frac{2x}{1-x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3}, x \in [-1, 1] \text{ sum of all solutions is } \alpha - \frac{4}{\sqrt{3}}, \text{ then } \alpha \text{ is } \alpha = \frac{\pi}{3}$$

A. 1

B. 2

- C. −2
- D.  $\sqrt{3}$

# Answer (B)

#### Solution:

$$\tan^{-1}\left(\frac{2x}{1-x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3}$$
  
for  $-1 < x < 0$ ,  $\tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}x$  and  $\cot^{-1}\left(\frac{1-x^2}{2x}\right) = \pi + 2\tan^{-1}x$   
 $2\tan^{-1}x + \pi + 2\tan^{-1}x = \frac{\pi}{3}$   
 $4\tan^{-1}x = -\frac{2\pi}{3}$   
for  $0 < x < 1$ ,  $\tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}x$  and  $\cot^{-1}\left(\frac{1-x^2}{2x}\right) = 2\tan^{-1}x$   
 $4\tan^{-1}x = \frac{\pi}{3}$   
 $x = \tan\frac{\pi}{12} = 2 - \sqrt{3}$   
sum  $= 2 - \sqrt{3} - \frac{1}{\sqrt{3}} = 2 - \frac{4}{\sqrt{3}}$   
 $\therefore \alpha = 2$ 

- 2. Mean of a data set is 10 and variance is 4. If one entry of data set changes from 8 to 12, then new mean becomes 10.2. Then now variance is:
  - A. 3.92
  - B. 3.96
  - C. 4.04 D. 4.08

## Answer (B)

## Solution:

Let number of observations be *n*  

$$10n - 8 + 12 = (10.2)n$$
  
 $10n + 4 = (10.2)n$   
 $\Rightarrow n = 20$   
For earlier set of observations  
 $\frac{\sum x_i^2}{20} - (10)^2 = 4$   
 $\Rightarrow \sum x_i^2 = (104)(20) = 2080$   
After change  
 $(\sum x_i^2)_{new} = 2080 - 8^2 + 12^2$   
 $= 2160$   
New variance  $= \frac{2160}{20} - (10.2)^2$   
 $= 108 - (10.2)^2$   
 $= 3.96$ 

**3.** If 
$$y = (1 + x)(x^2 + 1)(x^4 + 1)(x^8 + 1)(x^{16} + 1)$$
, then find the value of  $y'' - y'$  at  $x = -1$ :

- A. 496
- B. 946
- C. -496 D. -946

#### Answer (C)

## Solution:

$$y = (1 + x)(x^{2} + 1)(x^{4} + 1)(x^{8} + 1)(x^{16} + 1)$$
  
Multiply and divide by  $(x - 1)$  we get,  

$$y = \frac{(1+x)(x^{2}+1)(x^{4}+1)(x^{8}+1)(x^{16}+1)(x^{-1})}{(x-1)}$$

$$\Rightarrow y = \frac{(x^{2}-1)(x^{2}+1)(x^{4}+1)(x^{8}+1)(x^{16}+1)}{(x-1)}$$

$$\Rightarrow y = \frac{(x^{8}-1)(x^{8}+1)(x^{16}+1)}{(x-1)}$$

$$\Rightarrow y = \frac{(x^{16}-1)(x^{16}+1)}{(x-1)}$$

$$\Rightarrow y = \frac{(x^{32}-1)}{(x-1)}$$
At  $x = -1$  we get  $y = 0$   
 $y(x - 1) = x^{32} - 1$   
Differentiate on both sides,  
 $y'(x - 1) + y = 32x^{31} \cdots (1)$   
At  $x = -1$   
 $y'(-1) = \frac{-32}{-2} = 16$   
Differentiate equation (1) on both sides we get,  
 $y''(x - 1) + y' + y' = 32 \times 31x^{30}$   
At  $x = -1$   
 $y''(-1) = \frac{32 \times 31 - 16 - 16}{-2} = -480$   
 $\therefore y''(-1) - y'(-1) = -480 - 16 = -49$ 

- **4.** The logical statement  $(p \land \neg q) \rightarrow (p \rightarrow \neg q)$  is a:
  - A. Tautology
  - B. Fallacy
  - C. Equivalent to  $p \lor \sim q$
  - D. Equivalent to  $p \wedge \sim q$

## Answer (A)

#### Solution:

 $(p \land \sim q) \to (p \to \sim q)$  $= (p \land \sim q) \to (\sim p \lor \sim q)$  $= \sim (p \land \sim q) \lor (\sim p \lor \sim q)$  $= (\sim p \lor q) \lor (\sim p \lor \sim q)$  $= \sim p \land T = T (Tautology)$ 

**5.** If  $a_r$  is the coefficient of  $x^{10-r}$  in expansion of  $(1+x)^{10}$  then  $\sum_{r=1}^{10} r^3 \left(\frac{a_r}{a_{r-1}}\right)^2$  is:

- A. 390
- B. 1210
- C. 485
- D. 220

## Answer (B)

## Solution:

Coefficient of 
$$x^{10-r}$$
 in  $(1+x)^{10}$  is  ${}^{10}C_{10-r}$   
 $\therefore a_r = {}^{10}C_{10-r}$   
 $\sum_{r=1}^{10} r^3 \left(\frac{a_r}{a_{r-1}}\right)^2 = \sum_{r=1}^{10} r^3 \cdot \left(\frac{10!}{r!(10-r)!} \cdot \frac{(11-r)!(r-1)!}{10!}\right)^2$   
 $= \sum_{r=1}^{10} r^3 \cdot \left(\frac{11-r}{r}\right)^2 = \sum_{r=1}^{10} r(11-r)^2$   
 $\sum_{r=1}^{10} r(11-r)^2 = 1 \times 10^2 + 2 \times 9^2 + \dots + 9 \times 2^2 + 10 \times 1^2$   
Which is same as  $\sum_{r=1}^{10} r^2(11-r)$   
 $\sum_{r=1}^{10} r^2(11-r) = 1^2 \times 10 + 2^2 \times 9 + \dots + 9^2 \times 2 + 10^2 \times 1$   
 $\Rightarrow \sum_{r=1}^{10} r(11-r)^2 = \sum_{r=1}^{10} r^2(11-r)$   
 $\Rightarrow \sum_{r=1}^{10} r^2(11-r) = 11 \sum_{r=1}^{10} r^2 - \sum_{r=1}^{10} r^3$   
 $\Rightarrow \sum_{r=1}^{10} r^3 \left(\frac{a_r}{a_{r-1}}\right)^2 = 111 \left(\frac{10 \times 11 \times 21}{6}\right) - \left(\frac{10 \times 11}{2}\right)^2$   
 $\Rightarrow \sum_{r=1}^{10} r^3 \left(\frac{a_r}{a_{r-1}}\right)^2 = 11^2 \times 35 - 11^2 \times 25$   
 $\Rightarrow \sum_{r=1}^{10} r^3 \left(\frac{a_r}{a_{r-1}}\right)^2 = 11^2 \times 10 = 1210$   
**6.**  $\lim_{n \to \infty} \frac{1+2-3+4+5-6+\cdots(3n-2)+(3n-1)-3n}{\sqrt{2n^4+3n+1}-\sqrt{n^4+n+3}}$ 

A. 
$$\frac{3}{2}(\sqrt{2}+1)$$
  
B.  $\frac{2}{3}(\sqrt{2}+1)$   
C.  $\frac{2}{3\sqrt{2}}$   
D.  $2\sqrt{2}$ 

## Answer (A)

## Solution:

$$\begin{split} &\lim_{n \to \infty} \frac{1+2-3+4+5-6+\cdots(3n-2)+(3n-1)-3n}{\sqrt{2n^4+3n+1}-\sqrt{n^4+n+3}} \\ &= \lim_{n \to \infty} \frac{\sum_{r=1}^n ((3r-2)+(3r-1)-3r)}{\sqrt{2n^4+3n+1}-\sqrt{n^4+n+3}} \\ &= \lim_{n \to \infty} \frac{\sum_{r=1}^n 3(r-1)}{\sqrt{2n^4+3n+1}-\sqrt{n^4+n+3}} \\ &= \lim_{n \to \infty} \frac{3\frac{n(n-1)}{2}}{\sqrt{2n^4+3n+1}-\sqrt{n^4+n+3}} \\ &= \lim_{n \to \infty} \frac{3\frac{n(n-1)}{2}}{n^2 \left(\sqrt{2n^4+3n+1}-\sqrt{n^4+n+3}\right)} \\ &= \frac{3}{2} \left(\frac{1}{\sqrt{2-1}}\right) = \frac{3}{2} \left(\sqrt{2}+1\right) \end{split}$$

7. If  $|z - z_1|^2 + |z - z_2|^2 = |z_1 - z_2|^2$  when  $z_1 = 2 + 3i$  and  $z_2 = 3 + 4i$ , then locus of z is:

- A. Straight line with slope  $-\frac{1}{2}$
- B. Circle with radius  $\frac{1}{\sqrt{2}}$ C. Hyperbola with eccentricity  $\sqrt{2}$ D. Hyperbola with eccentricity  $\frac{5}{2}$



So, locus of *P* is circle whose diameter is *AB*   $AB = \sqrt{2}$  $\therefore$  radius of circle  $=\frac{1}{\sqrt{2}}$ 

8. 
$$f(x) = \int \frac{2x}{(x^2+1)(x^2+3)} dx$$
 if  $f(3) = \frac{1}{2} [\ln 5 - \ln 6]$ , then  $f(4)$  is:

A.  $\frac{1}{2}[\ln 17 - \ln 19]$ B.  $\frac{1}{2}[\ln 19 - \ln 17]$ C.  $\ln 19 - \ln 17$ D.  $\ln 17 - \ln 19$ 

## Answer (A)

## Solution:

$$f(x) = \int \frac{2x}{(x^2+1)(x^2+3)} dx$$
  
Let  $x^2 = t$   
 $2xdx = dt$   
 $\Rightarrow \int \frac{dt}{(t+1)(t+3)}$   
 $= \frac{1}{2} \int \frac{(t+3)-(t+1)}{(t+1)(t+3)} dt$   
 $= \frac{1}{2} [\ln|t+1| - \ln|t+3|] + \frac{c}{2}$   
 $= \frac{1}{2} [\ln|x^2+1| - \ln|x^2+3|] + \frac{c}{2}$   
Now  $f(3) = \frac{1}{2} [\ln 5 - \ln 6]$   
 $\Rightarrow \frac{1}{2} [\ln 5 - \ln 6] = \frac{1}{2} [\ln 10 - \ln 12] + \frac{c}{2}$   
 $\Rightarrow c = 0$   
 $\therefore f(x) = \frac{1}{2} [\ln|x^2+1| - \ln|x^2+3|]$   
 $\therefore f(4) = \frac{1}{2} [\ln 17 - \ln 19]$ 

- 9. If  $f(x) = \int_0^2 e^{|x-t|} dt$ , then the minimum value of f(x) is equal to:
  - A. 2(e 1)B. 2(e + 1)C. 2e - 1D. 2e + 1

## Answer (A)

## Solution:

For 
$$x > 2$$
  
 $f(x) = \int_{0}^{2} e^{x-t} dt \Rightarrow e^{x}(-e^{-t})|_{0}^{2} \Rightarrow e^{x}(1-e^{-2})$   
For  $x < 0$   
 $f(x) = \int_{0}^{2} e^{t-x} dt \Rightarrow e^{-x}e^{t}|_{0}^{2} \Rightarrow e^{-x}(e^{2}-1)$   
For  $0 \le x \le 2$   
 $f(x) = \int_{0}^{x} e^{x-t} dt + \int_{x}^{2} e^{t-x} dt$ 

$$= -e^{x}e^{-t}|_{0}^{x} + e^{-x}e^{t}|_{x}^{2}$$

$$= -e^{x}(e^{-x} - 1) + e^{-x}(e^{2} - e^{x})$$

$$= -1 + e^{x} + e^{2-x} - 1$$

$$= e^{2-x} + e^{x} - 2$$

$$f(x) = \begin{cases} e^{x}(1 - e^{-2}) x > 2 \\ e^{2-x} + e^{x} - 2 & 0 \le x \le 2 \\ e^{-x}(e^{x} - 1) x < 0 \end{cases}$$
For  $x > 2$ 

$$f(x)_{\min} = e^{2} - 1$$
For  $0 \le x \le 2$ 

$$f'(x) = -e^{2-x} + e^{x} = 0$$

$$\Rightarrow e^{x} = e^{2-x}$$

$$\Rightarrow e^{2x} = e^{2}$$

$$\Rightarrow x = 1$$

$$f(x)_{\min} = 2e - 2 = 2(e - 1)$$
**10.** If  $f(x) = x^{b} + 3$ ,  $g(x) = ax + c$ . If  $\left(g(f(x))\right)^{-1} = \left(\frac{x-7}{2}\right)^{\frac{1}{3}}$ , then  $fog(ac) + gof(b)$  is:

A. 189

B. 195

C. 194D. 89

## Answer (A)

## Solution:

$$g(f(x)) = a(x^{b} + 3) + c$$

$$\left(g(f(x))\right)^{-1} = \left(\frac{x-3a-c}{a}\right)^{\frac{1}{b}} = \left(\frac{x-7}{2}\right)^{\frac{1}{3}}$$

$$\Rightarrow a = 2$$

$$\Rightarrow b = 3$$

$$\Rightarrow c = 1$$

$$g(x) = 2x + 1$$

$$f(x) = x^{3} + 3$$
Now  $fog(2) + gof(3) = 128 + 61 = 189$ 

**11.** The term independent of x in the expansion of  $\left(2x + \frac{1}{x^7} - 7x^2\right)^5$  is :

- A. 1372 B. 2744 C. -13720
- D. 13720

## Answer (C)

## Solution:

Using multinomial theorem,

$$\left(2x + \frac{1}{x^7} - 7x^2\right)^5$$

$$= \frac{5!}{\alpha!\beta!\gamma!} (2x)^{\alpha} \left(\frac{1}{x^7}\right)^{\beta} (-7x^2)^{\gamma}, \text{ where } \alpha + \beta + \gamma = 5 \cdots (i)$$

$$= \frac{5!}{\alpha!\beta!\gamma!} 2^{\alpha}. (-7)^{\gamma} x^{\alpha-7\beta+2\gamma}$$
For independent term,  
 $\alpha - 7\beta + 2\gamma = 0 \cdots (ii)$ 
From (i) and (ii),  $\beta = \frac{\gamma+5}{8}$ 
Since  $\alpha, \beta, \gamma$  are integers from [1,5]  
 $\Rightarrow \gamma = 3, \beta = 1, \alpha = 1$   
 $\therefore$  independent term  $= \frac{5!}{1!1!3!} 2^1. (-7)^3$   
 $= -13720$ 

**12.** The value of  $A = \begin{bmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 2 & \log_y z \\ \log_z x & \log_z y & 3 \end{bmatrix}$  then  $|adj(adj A^2)|$  is: **A**. 6<sup>4</sup> **B**. 4<sup>8</sup> C. 4<sup>5</sup> D. 2<sup>8</sup>

Answer (D)

Solution:

$$A = \begin{bmatrix} 1 & \log_{x} y & \log_{x} z \\ \log_{y} x & 2 & \log_{y} z \\ \log_{z} x & \log_{z} y & 3 \end{bmatrix}$$
$$|A| = \frac{1}{\log x \log y \log z} \begin{bmatrix} \log x & \log y & \log z \\ \log x & 2 \log y & \log z \\ \log x & \log y & 3 \log z \end{bmatrix}$$
$$|A| = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
$$\Rightarrow |A| = 2$$
$$|adj(adj A^{2})| = |A|^{8}$$
$$= 2^{8}$$

- **13.** Sum of two positive integers is 66 and  $\mu$  is the maximum value of their product  $S = \left\{x \in \mathbb{Z}, x(66 x) \ge \frac{5\mu}{9}\right\}, x \neq \infty$ 0, then probability of A when  $A = \{x \in S; x = 3k, x \in \mathbb{N}\}$  is:
  - Α.
  - В.
  - 4 2 3 1 3 1 С.

  - D.

#### Answer (C)

#### Solution:

Let the two numbers be  $\alpha$  and  $\beta$  $\alpha + \beta = 66$  $A.M. \geq G.M.$  $\frac{\alpha + \beta}{2} \ge \sqrt{\alpha \beta}$   $\mu = 33 \times 33 = 1089$  $x(66-x) \ge \frac{5\mu}{9}$  $x(66-x) \ge \acute{605}$  $x^2 - 66x + 605 \le 0$  $x \in [11, 55]$ Favourable set of values of x for event  $A = \{12, 15, 18, \dots, 54\}$  $P(A) = \frac{15}{45} = \frac{1}{3}$ 

- **14.** Let  $L_1 = \frac{x-3}{1} = \frac{y-2}{2} = \frac{z-1}{3}$  and  $L_2 = \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$  and direction ratios of line  $L_3$  are < 1, -1, 3 > P and Q are points of intersection of  $L_1$  and  $L_3$  and  $L_2 \& L_3$ , respectively. Then, distance between P and Q is:
  - A.  $\frac{10}{3}\sqrt{6}$ B.  $\frac{8}{3}\sqrt{11}$ C.  $\frac{4}{3}\sqrt{11}$ D.  $\frac{11}{3}\sqrt{6}$

# Answer (B)

## Solution:

Let 
$$PQ = AB$$
  
Let  $A(3, 2, 1)$   
Equation of line  $AB$ :  
 $\frac{x-3}{1} = \frac{y-2}{-1} = \frac{z-1}{3} = k$  (let)  
 $\Rightarrow x = kx + 3, y = -k + 2, z = 3k + 1$   
Let coordinates of  $B(k + 3, -k + 2, 3k + 1)$   
 $B$  lies on  $L_2$   
 $B(\lambda + 1, 2\lambda + 2, 3\lambda + 3)$   
 $k + 3 = \lambda + 1 \Rightarrow \lambda - k = 2$   
 $2 - k = 2\lambda + 2 \Rightarrow 2\lambda + k = 0 \Rightarrow k = -2\lambda$   
 $\Rightarrow 3\lambda = 2 \Rightarrow \lambda = \frac{2}{3}$   
 $B\left(\frac{5}{3}, \frac{10}{3}, 5\right)$   
 $AB = \sqrt{\left(\frac{4}{3}\right)^2 + \left(\frac{4}{3}\right)^2 + 16}$   
 $= \frac{4}{3}\sqrt{11} = PQ$ 

- **15.** If  $\vec{a} = -\hat{i} + 2\hat{j} + \hat{k}$  is rotated by 90° about origin passing through *y*-axis. If new vector is  $\vec{b}$  then projection of  $\vec{b}$  on  $\vec{c} = 5\hat{i} + 4\hat{j} + 3\hat{k}$  is equal to:
  - A.  $\frac{6}{5}$ B.  $\frac{3}{5}$ C.  $\frac{6}{5\sqrt{3}}$ D.  $\frac{6\sqrt{3}}{5}$

# Answer (A)

Solution:

16.

$$\vec{b} = \lambda \vec{a} + \mu \hat{j}$$

$$b = \lambda (-\hat{\imath} + 2\hat{\jmath} + \hat{k}) + \mu \hat{\jmath}$$

$$\vec{b} \cdot \vec{a} = 0$$

$$(\lambda \vec{a} + \mu \hat{\jmath}) \vec{a} = 0$$

$$6\lambda + 2\mu = 0$$

$$\Rightarrow \mu = -3\lambda$$

$$\vec{b} = \lambda (\vec{a} - 3\hat{\jmath}) = \lambda (-\hat{\imath} - \hat{\jmath} + \hat{k})$$

$$\lambda = \pm \sqrt{2}$$
Projection of  $\vec{b}$  on  $\vec{c} = |\vec{b} \cdot \hat{c}|$ 

$$= \left| (-\hat{\imath} - \hat{\jmath} + \hat{k}) \frac{(5\hat{\imath} + 4\hat{\jmath} + 3\hat{k})}{5\sqrt{2}} \right| = \frac{6}{5}$$
Given  $\frac{dy}{dx} = \frac{y}{x} (1 + xy^2(1 + \ln x))$ . If  $y(1) = 3$ , then the value of  $\frac{y^2(3)}{9}$  is:  
A.  $-\frac{1}{43 + 27 \ln 3}$ 
B.  $\frac{1}{43 + 27 \ln 3}$ 
C.  $\frac{9}{59 - 162(1 + \ln 3)}$ 

D. 
$$\frac{1}{27 - 43 \ln 3}$$

#### Answer (B)

#### Solution:

$$\frac{dy}{dx} - \frac{y}{x} = y^{3}(1 + \ln x)$$

$$\Rightarrow \frac{1}{y^{3}} \frac{dy}{dx} - \frac{1}{xy^{2}} = (1 + \ln x)$$
Taking  $\frac{1}{y^{2}} = t$ 

$$\Rightarrow -\frac{2}{y^{3}} \frac{dy}{dx} = \frac{dt}{dx}$$

$$\therefore -\frac{1}{2} \frac{dt}{dx} - \frac{t}{x} = (1 + \ln x)$$

$$\Rightarrow \frac{dt}{dx} + \frac{2t}{x} = -2(1 + \ln x)$$
I.F.  $= e^{\int \frac{2}{x} dx} = x^{2}$ 

$$\therefore tx^{2} = \int -2(1 + \ln x)x^{2} dx$$

$$\Rightarrow tx^{2} = -2\left[\frac{(1 + \ln x)x^{3}}{3} - \int \frac{x^{2}}{3} dx\right] + c$$

$$\frac{x^{2}}{y^{2}} = -2\left[\frac{x^{3}}{3}(1 + \ln x) - \frac{x^{3}}{9}\right] + c \cdots (i)$$

$$y(1) = 3 \Rightarrow \frac{1}{9} = -2\left(\frac{1}{3} - \frac{1}{9}\right) + c$$

$$\therefore c = \frac{5}{9}$$
Now putting  $x = 3, c = \frac{5}{9}$  in  $(i)$ 

$$\frac{9}{y^{2}} = -2(9(1 + \ln 3) - 3) + \frac{5}{9}$$

$$= \frac{59}{9} - 18(1 + \ln 3)$$

$$\Rightarrow \frac{y^{2}}{9} = \frac{9}{59 - 162(1 + \ln 3)}$$

**17.** If  $a, b \in [1, 25]$ ,  $a, b \in \mathbb{N}$  such that a + b is multiple of 5, then the number of ordered pair (a, b) is \_\_\_\_\_.

## Answer (125)

Solution:

| TYPE           | NUMBERS           |
|----------------|-------------------|
| 5 <i>k</i>     | 5, 10, 15, 20, 25 |
| 5 <i>k</i> + 1 | 1, 6, 11, 16, 21  |
| 5 <i>k</i> + 2 | 2, 7, 12, 17, 22  |
| 5 <i>k</i> + 3 | 3, 8, 13, 18, 23  |
| 5k + 4         | 4, 9, 14, 19, 24  |

(*a*, *b*) can be selected as *I*. 1 of 5k + 1 and 1 of  $5k + 4 = 2 \times 25 = 50$  *II*. 1 of 5k + 2 and 1 of  $5k + 3 = 2 \times 25 = 50$  *III*. Both of the type 5k = 25Total = 125

**18.** If  $\log_2(9^{2\alpha-4} + 13) - \log_2(3^{2\alpha-4}, \frac{5}{2} + 1) = 2$ , then maximum integral value of  $\beta$  for which equation,  $x^2 - ((\sum \alpha)^2 x) + \sum (\alpha + 1)^2 \beta = 0$  has real roots is \_\_\_\_\_.

```
\log_{2}(9^{2\alpha-4} + 13) - \log_{2}\left(3^{2\alpha-4} \cdot \frac{5}{2} + 1\right) = 2

\therefore \frac{9^{2\alpha-4} + 13}{3^{2\alpha-4} \frac{5}{2} + 1} = 4

Let 3^{2\alpha-4} = t

\Rightarrow t^{2} + 13 = 10t + 4

\Rightarrow t^{2} - 10t + 9 = 0

\Rightarrow t = 9,1

\Rightarrow \alpha = 3,2

Now equation will become:

x^{2} - 25x + 25\beta = 0 has real roots

\therefore D \ge 0

\Rightarrow 25^{2} - 4 \cdot 25\beta \ge 0

\Rightarrow \beta \le \frac{25}{4}

Maximum integral value = 6
```