JEE Main 2023 (Memory based)

25 January 2023 - Shift 1

Answer \& Solutions

PHYSICS

1. A car moving with constant speed of $2 \mathrm{~m} / \mathrm{s}$ in circle having radius R. A pendulum is suspended from the ceiling of car. Find the angle made by the pendulum with the vertical. Take $R=8 / 15 \mathrm{~m}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. 30°
B. 53°
C. 37°
D. 60°

Answer (C)

Solution:

$T \sin \theta=\frac{m v^{2}}{R}$
$T \cos \theta=m g$
$\tan \theta=\frac{v^{2}}{R g}=\frac{4}{\frac{8}{15} \times 10}=\frac{3}{4}$
$\theta=37^{\circ}$

2. A particle is dropped inside a tunnel of the earth about any diameter. Particle starts oscillating, with time period T. ($R=$ Radius of earth, $g=$ acceleration due to gravity on earth's surface). Then find T.
A. $T=2 \pi \sqrt{\frac{R}{g}}$
B. $T=\pi \sqrt{\frac{R}{g}}$
C. $T=2 \pi \sqrt{\frac{2 R}{g}}$
D. $T=2 \pi \sqrt{\frac{3 R}{g}}$

Solution:

Restoring force, $F=-\frac{G M m r}{R^{3}}$
$m \frac{d v}{d t}=-\left(\frac{G M m}{R^{3}}\right) r$
$\frac{d v}{d t}=-\left(\frac{G M}{R^{3}}\right) r=-\left(\frac{g}{R}\right) r$
$\omega=\sqrt{\frac{g}{R}}$
$T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{R}{g}}$
3. A massless rod is arranged as shown:

Find the tension in the string. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.)
A. 320 N
B. 640 N
C. 160 N
D. 480 N

Answer (A)

Solution:

Balancing the torque on the rod about the point of contact with the wall:

$$
\begin{aligned}
& \left(T \sin 30^{\circ}\right) \times 40=(m g) \times(40+40) \\
& T=320 N
\end{aligned}
$$

4. A Carnot engine working between a source and a sink at 200 K has efficiency of 50%. Another Carnot engine working between the same source and another sink with unknown temperature T has efficiency of 75%. The value of T is equal to
A. 400 K
B. 300 K
C. 200 K
D. 100 K

Answer (D)

Solution:

Let the source temperature of first engine is T.
$\eta=1-\frac{200}{T}=\frac{50}{100}$
$\Rightarrow T=400 \mathrm{~K}$
Let the source temperature of second engine is T.
$\eta=1-\frac{T^{\prime}}{400}=\frac{75}{100}$
$\Rightarrow T^{\prime}=100 \mathrm{~K}$
5. Mark the option correctly matching the following columns with appropriate dimensions.

Column-1	Column-2
A-Surface Tension	$P-\left[M L^{-1} T^{-2}\right]$
B-Pressure	$Q-\left[M T^{-2}\right]$
C-Viscosity	$R-\left[M L T^{-1}\right]$
D-Impulse	$S-\left[M L^{-1} T^{-1}\right]$

A. $A-Q, B-P, C-R, D-S$
B. $A-Q, B-P, C-S, D-R$
C. $A-S, B-Q, C-P, D-R$
D. $A-R, B-P, C-Q, D-S$

Answer (B)

Solution:

$$
\begin{aligned}
& {[\text { Surface tension }]=\left[\frac{F}{L}\right]=\left[M T^{-2}\right]} \\
& {[\text { Pressure }]=\left[\frac{F}{A}\right]=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]}=\left[M L^{-1} T^{-2}\right]} \\
& {[\text { Viscosity }]=\left[\frac{F}{r v}\right]=\frac{\left[M L T^{-2}\right]}{\left[L . L T^{-1}\right]}=\left[M L^{-1} T^{-1}\right]} \\
& {[\text { Impulse }]=[F t]=\left[M L T^{-1}\right]}
\end{aligned}
$$

6. In the series sequence of two engines E_{1} and E_{2} as shown. $T_{1}=600 \mathrm{~K}$ and $T_{2}=300 \mathrm{~K}$. It is given that both the engines working on Carnot principle have same efficiency, then temperature T at which exhaust of E_{1} is fed into E_{2} is equal to $300 \sqrt{n} K$. Value of n is equal to \qquad _.

Answer (2.0)

Solution:

$\eta_{1}=1-\frac{T_{1}}{600}$
$\eta_{2}=1-\frac{300}{T}$
Given: $\eta_{1}=\eta_{2}$
$\Rightarrow \frac{T}{600}=\frac{300}{T}$
$\Rightarrow T=\sqrt{180000} K=300 \sqrt{2} K$

$\Rightarrow n=2$
7. A solenoid of length $2 m$, has 1200 turns. The magnetic field inside the solenoid, when $2 A$ current is passed through it is $N \times \pi \times 10^{-5} T$. Find the value of N. (Diameter of solenoid is 0.5 m)

Answer (48.0)

Solution:

Magnetic field inside solenoid $=\mu_{o} n i$
where $n=$ Number of turns per unit length $=1200 / 2=600 \mathrm{turns} / \mathrm{m}$

$$
\begin{aligned}
B_{\text {solenoid }}=\mu_{o} n i & =\left(4 \pi \times 10^{-7} \times 600 \times 2\right) T \\
& =8 \pi \times 10^{-7} \times 600 \mathrm{~T} \\
& =48 \pi \times 10^{-5} \mathrm{~T}
\end{aligned}
$$

8. Consider a network of resistors as shown. Find the effective resistance (in Ω) across A and B.

Answer (5.0)

Solution:

Effectively, the network is

$$
\begin{aligned}
R_{A B} & =1 \Omega+\frac{2 \times 2}{2+2} \Omega+3 \Omega \\
& =5 \Omega
\end{aligned}
$$

9. Find the ratio of density of $\operatorname{Oxygen}\left(\mathrm{O}_{8}^{16}\right)$ to the density of $\operatorname{Helium}\left(\mathrm{He}_{2}^{4}\right)$ at STP.

Answer (8.0)

Solution:

We know,

$$
\begin{aligned}
\frac{P}{\rho} & =\frac{R T}{M_{0}} \\
\Rightarrow & \frac{\rho_{1}}{\rho_{2}}
\end{aligned}=\frac{M_{1}}{M_{2}}=\frac{32}{4}=8 ~ \$
$$

10. Consider the following two $L C$ circuit.

Then find ω_{1} / ω_{2}, where ω_{1} and ω_{2} are resonance frequencies of the two circuits.

Answer (4.0)

Solution:

$\omega_{1}=\frac{1}{\sqrt{L C}}$
$\omega_{2}=\frac{1}{\sqrt{8 L \times 2 C}}=\frac{1}{4 \sqrt{L C}}$
$\frac{\omega_{1}}{\omega_{2}}=4$
11. A car moving on a straight-line travels in same direction half of the distance with uniform velocity v_{1} and other half of the distance with uniform velocity v_{2}. Average velocity of the car is equal to
A. $2 v_{1} v_{2} /\left(v_{1}+v_{2}\right)$
B. $\left(v_{1}+v_{2}\right) / 2$
C. $v_{1}+v_{2}$
D. $\sqrt{ }\left(v_{1}+v_{2}\right)$

Answer (A)

Solution:

Time to travel:
$t_{1}=\frac{x}{2 v_{1}}$ and $t_{2}=\frac{x}{2 v_{2}}$
So,
$v_{\text {avg }}=\frac{\text { Total distance }}{\text { Total Time }}$
$v_{\text {avg }}=\frac{x}{t_{1}+t_{2}}$
$v_{\text {avg }}=\frac{x}{\frac{x}{2 v_{1}}+\frac{x}{2 v_{2}}}$
$v_{\text {avg }}=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
12. If T is the temperature of a gas, then $R M S$ velocity of the gas molecules is proportional to
A. $T^{1 / 2}$
B. $T^{-1 / 2}$
C. T
D. T^{2}

Solution:

We know that:
$v_{r m s}=\sqrt{\frac{3 R T}{M_{0}}}$
So,
$v_{r m s} \propto \sqrt{T}$
13. The period of a pendulum at earth's surface is T. Find the time period of the pendulum at distance (from centre) which is twice the radius of earth.
A. $T / 4$
B. $4 T$
C. $T / 2$
D. $2 T$

Answer (D)

Solution:

We know that :
$T=2 \pi \sqrt{\frac{l}{g}}$
Case 1:
$T=2 \pi \sqrt{\frac{l}{G M / R^{2}}}$
Case 2:
$T^{\prime}=2 \pi \sqrt{\frac{l}{G M / 4 R^{2}}}$
So,

$$
\frac{T^{\prime}}{T}=\frac{2}{1} \Rightarrow T^{\prime}=2 T
$$

14. Let $I_{c m}$ be the moment of Inertia of disc passing through center and perpendicular to its plane. $I_{A B}$ be the moment of inertia about axis $A B$ that is in the plane of disc and $\frac{2 r}{3}$ distance from center. Find $\frac{I_{c m}}{I_{A B}}$?
A. $1 / 4$
B. $18 / 25$
C. $9 / 17$
D. $1 / 2$

Answer (B)

Solution:

Moment of Inertia, $I_{c m}=\frac{M r^{2}}{2}$ (Perpendicular to plane)
$I_{c m}($ in plane $)=\frac{M r^{2}}{4}$
$I_{A B}=\frac{M r^{2}}{4}+M\left(\frac{2}{3} r\right)^{2}$
$I_{A B}=\frac{(9+16) M r^{2}}{36}=\frac{25}{36} M r^{2}$
$\frac{I_{c m}(\text { Perpendicular })}{I_{A B}}=\frac{\frac{1}{2} M r^{2}}{\frac{25}{36} M r^{2}}=\frac{18}{25}$

15. Temperature of hot soup in a bowl goes $98^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 min . The temperature of surrounding is $22^{\circ} \mathrm{C}$. Find the time taken for the temperature of soup to go from $75^{\circ} \mathrm{C}$ to $69^{\circ} \mathrm{C}$. (Assume Newton's law of cooling is valid)
A. 1 min
B. 1.4 min
C. 2 min
D. 3.2 min

Answer (B)

Solution:

We have,

$$
\frac{\Delta \theta}{\Delta t}=-K\left(\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right)
$$

Given, $\theta_{0}=22^{\circ} \mathrm{C}$

$$
\begin{align*}
& \frac{98-86}{2}=-K\left(\frac{98+86}{2}-22\right) \ldots \tag{1}\\
& \frac{75-69}{t_{2}}=-K\left(\frac{75+69}{2}-22\right) \ldots \tag{2}
\end{align*}
$$

From (1) and (2)

$$
t_{2}=\frac{70}{50}=1.4 \mathrm{~min}
$$

16. Electric field is applied along $+y$ direction. A charged particle is travelling along $-\hat{k}$, undeflected. Then magnetic field in the region will be along?
A. $\hat{\imath}$
B. $-\hat{\imath}$
C. $\hat{\jmath}$
D. $-\hat{k}$

Solution:

If the charged particle is moving in both uniform electric and magnetic field with no deflection than force will be zero on charged particle.

$$
\begin{aligned}
& q(\vec{E}+\vec{v} \times \vec{B})=0 \\
& (\vec{v} \times \vec{B})=-\vec{E} \\
& \left(v_{0}(-\hat{k}) \times \vec{B}\right)=-E_{0} \hat{\jmath}
\end{aligned}
$$

\vec{B} should be in $\hat{\imath}$ direction to balance the electrostatic force on the charge particle. (Assuming the given charge to be positive.)
17. When an electron is accelerated by 20 kV , its de-broglie wavelength is λ_{0}. If the electron is accelerated by 40 kV , find its de-Broglie wavelength.
A. $2 \lambda_{0}$
B. $\frac{\lambda_{0}}{2}$
C. $\sqrt{2} \lambda_{0}$
D. $\frac{\lambda_{0}}{\sqrt{2}}$

Answer (D)

Solution:

We know,
$\lambda_{0}=\frac{h}{p}$
$\lambda_{0}=\frac{h}{\sqrt{2 m K}}$
$\lambda_{0}=\frac{h}{\sqrt{2 m e V}}$

Since V doubles.
$\frac{\lambda^{\prime}}{\lambda_{0}}=\sqrt{\frac{V}{2 V}}=\frac{1}{\sqrt{2}}$
$\lambda^{\prime}=\frac{\lambda_{0}}{\sqrt{2}}$
18. Find the equivalent resistance of the given circuit across the terminals of ideal battery.
A. $2 R$
B. $3 R$
C. $4 R$
D. $5 R$

Answer (B)

Solution:

In $2^{\text {nd }}$ part of diagram a connecting wire is nullifying the resistance of parallel resistance thus their new resistance is zero. So, net resistance of circuit is $3 R$
19. For an $A M$ signal, it is given that $f_{\text {carrier }}=10 \mathrm{MHz} \& f_{\text {signal }}=5 \mathrm{kHz}$. Find the bandwidth of the transmitted signal.
A. 5 kHz
B. 10 kHz
C. 2.5 kHz
D. 20 MHz

Answer (B)

Solution:

Bandwidth of amplitude modulated wave is:

$$
\Delta f=2 f_{m}=10 \mathrm{kHz}
$$

20. Let nuclear densities of ${ }_{2}^{4} \mathrm{He}$ and ${ }_{20}^{40} \mathrm{Ca}$ be ρ_{1} and ρ_{2} respectively. Find the ratio $\frac{\rho_{1}}{\rho_{2}}$.
A. $1: 10$
B. $10: 1$
C. $1: 1$
D. $1: 2$

Answer (C)

Solution:

We know radius,
$R=R_{o} A^{\frac{1}{3}}$
Density $=\frac{\text { Mass }}{\text { Volume }}$
Density $=\frac{A}{\frac{4}{3} \pi\left(R_{o} A^{\frac{1}{3}}\right)^{3}}=\frac{1}{\frac{4}{3} \pi R_{o}^{3}}$
Density is independent of A
$\frac{\rho_{1}}{\rho_{2}}=1 \Rightarrow \rho_{1}: \rho_{2}=1: 1$
21. A particle is projected with 0.5 eV kinetic energy in a uniform electric field $\vec{E}=-10 \frac{N}{c} \hat{\jmath}$ as shown in the figure.

Find the angle particle made from the x - axis when it leaves \vec{E}.
A. $\theta=45^{\circ}$
B. $\theta=60^{\circ}$
C. $\theta=30^{\circ}$
D. $\theta=37^{\circ}$

Answer (A)

Solution:

In x-direction:
$v_{x}=v_{0}$
In y-direction:
$a_{y}=\left(\frac{e E}{m_{e}}\right)$
$s_{y}=5 \times 10^{-2} \mathrm{~m}$

$v_{y}^{2}=2 a_{y} s_{y}$
$v_{y}=\sqrt{\frac{2 e E}{m_{e}} s_{y}}$
$\tan \theta=\left(\frac{v_{y}}{v_{x}}\right)$
$K_{i}=0.5 \mathrm{eV}=\frac{1}{2} \frac{m_{e} v_{x}^{2}}{e}$
$v_{x}=\sqrt{\frac{0.5 \times 2 e}{m_{e}}}=\sqrt{\frac{e}{m_{e}}}$
$\tan \theta=\frac{\sqrt{\frac{2 e E}{m_{e}} s_{y}}}{\sqrt{\frac{e}{m_{e}}}}=\sqrt{2 E s_{y}}=\sqrt{2 \times 10 \times 5 \times 10^{-2}}=1$
$\theta=\tan ^{-1} 1=45^{\circ}$
22. Find the ratio of acceleration due to gravity at an altitude $h=R$ to the value at the surface of earth (where $R=$ radius of earth)
A. $1 / 2$
B. $1 / 4$
C. $1 / 8$
D. $1 / 6$

Answer (B)

Solution:

We have,
$\frac{g_{h}}{g}=\left(\frac{R}{R+h}\right)^{2}$
$\frac{g_{h}}{g}=\left(\frac{R}{R+R}\right)^{2}=\frac{1}{4}$
23. Statement 1: Photodiodes are operated in reverse biased.

Statement 2 : Current in forward biased is more than current in reverse bias in $p-n$ diode.
A. Both the statements are true and 2 is the correct explanation of 1.
B. Both the statements are true and 2 is not the correct explanation of 1.
C. Statement 1 is true and statement 2 is false.
D. Statement 2 is true and statement 1 is false.

Answer (B)

Sol. Statement 1 is true as photodiode is used in reverse bias to increase the sensitivity of diode current. Statement 2 is true as diode provides greater resistance in reverse bias.

CHEMISTRY

1. Radius of $2^{\text {nd }}$ orbit of Li^{2+} ion is x, radius of $3^{\text {rd }}$ orbit of Be^{3+} will be
A. $\frac{27 x}{16}$
B. $\frac{16 x}{27}$
C. $\frac{4 x}{3}$
D. $\frac{3 x}{4}$

Answer (A)

Solution:

$r_{L i^{2+}}=r_{o} \times \frac{2^{2}}{3}=\frac{4 r_{o}}{3}=x \Rightarrow r_{o}=\frac{3 x}{4}$
$r_{B e^{3+}}=r_{o} \times \frac{3^{2}}{4}=\frac{9 r_{o}}{4}=\frac{9 \times 3 \times x}{4 \times 4}=\frac{27 x}{16}$
2. If X-atoms are present at alternate corners and at body centre of a cube and Y-atoms are present at $1 / 3^{\text {rd }}$ of face centers then what will be the empirical formula?
A. $X_{2.5} Y$
B. $X_{5} Y_{2}$
C. $X_{1.5} Y$
D. $X_{3} Y_{2}$

Answer (D)

Solution:

No. of X - atoms per unit cell $=1+4 \times \frac{1}{8}=\frac{3}{2}$
No. of Y - atoms per unit cell $=2 \times \frac{1}{2}=1$
Therefore, the empirical formula of the solid is $X_{3} Y_{2}$.
3. Which of the following option contains the correct match

Table - I (Elements)	Table - II (Flame colour)
A. K	P. Violet
B. Ca	Q. Brick Red
C. Sr	R. Apple Green
D. Ba	S. Crimson Red

A. $A-P, B-Q, C-S, D-R$
B. $A-Q, B-P, C-S, D-R$
C. $A-R, B-S, C-P, D-Q$
D. $A-S, B-R, C-Q, D-P$

Solution:

K - Violet
Ca - Brick Red
Sr - Crimson Red
Ba - Apple Green
4. Match the following

List - I	
A. $\mathrm{Pb}^{2+}, \mathrm{Cu}^{2+}$	1. $\mathrm{H}_{2} \mathrm{~S}$ in - II dil HCl
B. $\mathrm{Fe}^{3+}, \mathrm{Al}^{3+}$	2. $\mathrm{NH}_{4} \mathrm{Cl}$ with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
C. $\mathrm{Ni}^{2+}, \mathrm{Co}^{2+}$	3. $\mathrm{H}_{2} \mathrm{~S}$ in dil $\mathrm{NH}_{4} \mathrm{OH}$
D. $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}$	4. $\mathrm{NH}_{4} \mathrm{Cl}$ with $\mathrm{NH}_{4} \mathrm{OH}$

A. $A-1, B-2, C-3, D-4$
B. $A-1, B-4, C-3, D-2$
C. $A-4, B-3, C-2, D-1$
D. $A-2, B-1, C-4, D-3$

Answer (B)

Solution:

Pb^{2+} and $\mathrm{Cu} u^{2+}$ will precipitate as PbS and CuS respectively by passing $\mathrm{H}_{2} \mathrm{~S}$ gas in presence of dil. HCl .
Fe^{3+} and Al^{3+} will precipitate as $\mathrm{Fe}(\mathrm{OH})_{3}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ respectively by adding $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$
Ni^{2+} and Co^{2+} will precipitate as NiS and CoS respectively by passing $\mathrm{H}_{2} \mathrm{~S}$ in presence of dil $\mathrm{NH}_{4} \mathrm{OH}$.
Ca^{2+} and Ba^{2+} will precipitate as CaCO_{3} and BaCO_{3} respectively by adding $\mathrm{NH}_{4} \mathrm{Cl}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$.
5. Which of the following is correct about antibiotics
A. Antibiotics are the substances that promote the growth of micro-organisms
B. Penicillin has bacteriostatic effect
C. Erythromycin has bactericidal effect
D. They are synthesised artificially

Answer (D)

Solution: Antibiotics are synthesised artificially.
6. Consider the following sequences of the reactions
$\mathrm{NO}_{2} \xrightarrow{h v} A+B$
$B+O_{2} \rightarrow O_{3}(g)$
A can be?
A. $\mathrm{N}_{2} \mathrm{O}$
B. $N O$
C. $\mathrm{N}_{2} \mathrm{O}_{3}$
D. N_{2}

Answer (B)

Solution:

$$
\mathrm{NO}_{2} \xrightarrow{h v} \mathrm{NO}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

(A) (B)
$O(g)+O_{2}(g) \rightarrow O_{3}(g)$
(B)
7. Correct order of basic strength in aqueous solution for

1. $\mathrm{CH}_{3}-\mathrm{NH}_{2}$
2. $\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{3}$
3. $\mathrm{CH}_{3}-\mathrm{N}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{3}$
4. NH_{3}
A. $2>1>3>4$
B. $3>2>1>4$
C. $4>2>1>3$
D. $2>4>3>1$

Answer (A)

Solution:

Basic strength \propto Availability of lone pairs on Nitrogen atom
The correct order of basic strength in aqueous medium is
$\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{3}>\mathrm{CH}_{3}-\mathrm{NH}_{2}>\mathrm{CH}_{3}-\mathrm{N}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{3}>\mathrm{NH}_{3}$
(1)
(3)
(4)

The availability of lone pair on N -atom in case of ammonia and alkyl amines in aqueous medium depend on three factors

1) Electron donating effects: $+I$ effect is present in case of alkyl amines but not in case of ammonia and availability of electrons on $\mathrm{N}-$ atom $\propto+$ effect
2) Solvation: More is the solvation less will be the availability of electrons on N -atom. Extent of solvation \propto no. of H -atoms directly attach to N -atom
3) Steric Crowding: More is no. of alkyl groups more is the steric crowding and less will be the availability of electrons on N -atom
8. Which Graph graph is correct for Isothermal process at $T_{1}, T_{2} \& T_{3}$ if $\left(T_{3}>T_{2}>T_{1}\right)$

B.

C.
D.

Answer (D)

Solution:

According to Boyle Law $P \propto \frac{1}{V}$
The graph must be hyperbola.
As we know, $P V=n R T$
So as increase the Temperature the PV graph area increases

As $\left(V_{3}>V_{2}>V_{1}\right)$ for fixed P
$=\left(T_{3}>T_{2}>T_{1}\right)$
And the correct option is (D)
9. An athlete is given 100 g of glucose energy equivalent to 1560 KJ to utilise 50% of this gained energy in an event. Enthalpy of evaporation of $\mathrm{H}_{2} \mathrm{O}$ is $44 \mathrm{KJ} / \mathrm{mol}$. In order to avoid storage of energy in the body the mass of water (in g) he would perspire is: (Round off the nearest Integer)

Answer (319)

Solution:

Given 100 g of glucose yields 1560 KJ of energy.
50% of 1560 KJ that is 780 KJ is used to perspire water
To perspire 1 mol of water that is 18 g of water 44 KJ energy is required
Therefore,
Moles of water evaporated $=\frac{780}{44} \mathrm{~mol}$
Weight of water evaporated $=\frac{780}{44} \times 18=319 \mathrm{~g}$
(Assuming water is contained in the body)
10. Which of the following option contains the correct graph between π / c and c at constant temperature (Where π is osmotic pressure and c is concentration of the solute)
A.

B.

C.

.
c
D.

Answer (A)

Solution:

$\pi=c R T$
$\frac{\pi}{c}=R T$

The value of $\frac{\pi}{c}$ is constant at constant temperature
11. How many of the following ions/elements has the same value of spin magnetic moment?

$$
\mathrm{V}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}
$$

Answer (2)

Solution:

$$
\begin{aligned}
& \mathrm{V}^{3+}-\mathrm{d}^{2}-2 \text { unpaired electrons } \\
& \mathrm{Cr}^{3+}-\mathrm{d}^{3}-3 \text { unpaired electrons } \\
& \mathrm{Fe}^{2+}-\mathrm{d}^{6}-4 \text { unpaired electrons } \\
& \mathrm{Ni}^{2+}-\mathrm{d}^{8}-2 \text { unpaired electrons } \\
& \mathrm{V}^{3+} \text { and } \mathrm{Ni}^{2+} \text { has the same number of unpaired electrons and hence has the same value of spin magnetic } \\
& \text { Moment. }
\end{aligned}
$$

12. How many of the following complexes is (are) paramagnetic?

$$
\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-},[\mathrm{NiCl} 44]^{2-},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-},[\mathrm{CuCl} 44]^{2-},\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3^{-}},\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}
$$

Answer (4)

Solution:

$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}-\mathrm{d}^{5}$ - paramagnetic
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ - d^{6} - diamagnetic
$\left[\mathrm{NiCl}_{4}\right]^{2-}$ - d^{8} - paramagnetic
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}-\mathrm{d}^{8}$ - diamagnetic
$[\mathrm{CuCl} 4]^{2-}-\mathrm{d}^{9}$ - paramagnetic
$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}-\mathrm{d}^{10}$ - diamagnetic
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}-\mathrm{d}^{9}-$ paramagnetic
13. Which of the following shows least reactivity towards nucleophilic substitution reaction?
A.

B.

C.

D.

Answer (C)

Solution:

Aryl halides containing EWG at ortho or para position are more reactive towards nucleophilic substitution. reaction than meta isomer.
14. For a first order reaction, $A \rightarrow B ; t_{1 / 2}$ is 30 minutes. Then find the time in minutes required for 75% completion of reaction?

Answer (60 minutes)

Solution:

$$
t_{75 \%}=t_{1 / 4}=2 \times t_{1 / 2}=2 \times 30 \text { minutes }=60 \text { minutes }
$$

15. Match List - I with List - II.

List-I	List - II
A. $\alpha-$ - Glucopyranose	1.
B. $\beta-D-$ Glucopyranose	2.
C. $\alpha-D-$ Fructofuranose	3.
D. $\beta-D-$ Fructofuranose	4.

A. $A-4 ; B-1 ; C-2 ; D-3$
B. $A-1 ; B-4 ; C-3 ; D-2$
C. $A-2 ; B-3 ; C-4 ; D-1$
D. $A-1 ; B-3 ; C-2 ; D-4$
16. Consider the following conversion.

Which of the following option contains the correct structure of ' A '.
A.

B.

C.

D.

Answer (B)

Solution:

17. Consider the following sequence of reaction.

Which of the following option contains the correct structure?
A. A is

B. B is

C. C is

Answer (C)

Solution:

18. Identify the correct sequence of reactants for the following conversion.
n-Heptane $\longrightarrow \longrightarrow \longrightarrow \longrightarrow \mathrm{PhCOOH}+\mathrm{PhCH}_{2} \mathrm{OH}$
A. $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CrO}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{3} \mathrm{O}^{+}$, Conc. $\mathrm{NaOH}, \mathrm{H}_{3} \mathrm{O}^{+}$
B. $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CrO}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{3} \mathrm{O}^{+}$, Conc. NaOH
C. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$, Conc. $\mathrm{NaOH}, \mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{Sn} / \mathrm{HCl}, \mathrm{Conc}$. $\mathrm{NaOH}, \mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{HNO}_{3}$

Answer (A)

Solution:

19. Thionyl chloride on reaction with white phosphorous gives compound A. A on hydrolysis gives compound B which is dibasic. Identify A and B .
A. $A-P_{C l}, B=H_{3} \mathrm{PO}_{2}$
B. $A-P_{4} O_{6}, B=H_{3} \mathrm{PO}_{4}$
C. $A-\mathrm{POCl}_{3}, B=\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $A-\mathrm{PCl}_{3}, B=\mathrm{H}_{3} \mathrm{PO}_{3}$

Answer (D)

Solution:

$$
\mathrm{P}_{4}+8 \mathrm{SOCl}_{2} \rightarrow 4 \mathrm{PCl}_{3}+4 \mathrm{SO}_{2}+2 \mathrm{~S}_{2} \mathrm{Cl}_{2}
$$

(A)
$\mathrm{PCl}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}$
(B)
20. The correct decreasing order of positive electron gain enthalpy for the following inert gases.
$\mathrm{He}, \mathrm{Ne}, \mathrm{Kr}, \mathrm{Xe}$
A. $\mathrm{He}>\mathrm{Ne}>\mathrm{Kr}>\mathrm{Xe}$
B. $\mathrm{He}>\mathrm{Ne}>\mathrm{Xe}>\mathrm{Kr}$
C. $\mathrm{He}>\mathrm{Xe}>\mathrm{Ne}>\mathrm{Kr}$
D. $\mathrm{Ne}>\mathrm{Kr}>\mathrm{Xe}>\mathrm{He}$

Answer (D)

Solution: The correct order is, $\mathrm{Ne}>\mathrm{Kr}>\mathrm{Xe}>\mathrm{He}$
21. Consider the following cell represent:
$\mathrm{Pt} / \mathrm{H}_{2} / \mathrm{H}^{+} / / \mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}$
(1 atm) (1 M)
Then Find the ratio of concentration of concentration of Fe^{+2} to Fe^{+3} ? [Given $\mathrm{E}_{\text {cell }}=0.712, \mathrm{E}^{0}{ }_{\text {cell }}=0.771$]

Answer (10)

Solution:

$$
\begin{aligned}
& E_{\text {Cell }}=E_{\text {cell }}^{0}-\frac{0.059}{n} \log \left[\frac{\left[F e^{2+}\right]\left[H^{+}\right]}{\left[F e^{3+}\right]}\right]^{2} \\
& \Rightarrow 0.712=0.771-\frac{0.059}{2} \times 2 \log \frac{\left[F e^{2+}\right]}{\left[F e^{3+}\right]} \\
& \Rightarrow-0.059=-0.059 \log \frac{\left[F e^{2+}\right]}{\left[F e^{3+}\right]} \\
& \Rightarrow \frac{\left[F e^{2+}\right]}{\left[F e^{3+}\right]}=10
\end{aligned}
$$

22. Which of the following complexes is paramagnetic in nature?
A. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{2-}$
B. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
C. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$

Answer (C)

Solution:

1. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{2-}$

Complex is diamagnetic.
2. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \mathrm{dsp}^{2}$ hybridisation, so it is diamagnetic
3. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation, so it is paramagnetic
4. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} \mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation, so it is diamagnetic

So correct answer is option (C)

MATHEMATICS

1. $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{3}, x \in[-1,1]$ sum of all solutions is $\alpha-\frac{4}{\sqrt{3}}$, then α is:
A. 1
B. 2
C. -2
D. $\sqrt{3}$

Answer (B)

Solution:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{3} \\
& \text { for }-1<x<0, \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x \text { and } \cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\pi+2 \tan ^{-1} x \\
& 2 \tan ^{-1} x+\pi+2 \tan ^{-1} x=\frac{\pi}{3} \\
& 4 \tan ^{-1} x=-\frac{2 \pi}{3} \\
& x=-\frac{1}{\sqrt{3}} \\
& \text { for } 0<x<1, \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x \text { and } \cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=2 \tan ^{-1} x \\
& 4 \tan ^{-1} x=\frac{\pi}{3} \\
& x=\tan \frac{\pi}{12}=2-\sqrt{3} \\
& \text { sum }=2-\sqrt{3}-\frac{1}{\sqrt{3}}=2-\frac{4}{\sqrt{3}} \\
& \therefore \alpha=2
\end{aligned}
$$

2. Mean of a data set is 10 and variance is 4 . If one entry of data set changes from 8 to 12 , then new mean becomes 10.2. Then now variance is:
A. 3.92
B. 3.96
C. 4.04
D. 4.08

Answer (B)

Solution:

Let number of observations be n
$10 n-8+12=(10.2) n$
$10 n+4=(10.2) n$
$\Rightarrow n=20$
For earlier set of observations
$\frac{\sum x_{i}^{2}}{20}-(10)^{2}=4$
$\Rightarrow \sum x_{i}^{2}=(104)(20)=2080$
After change
$\left(\sum x_{i}^{2}\right)_{\text {new }}=2080-8^{2}+12^{2}$
$=2160$
New variance $=\frac{2160}{20}-(10.2)^{2}$
$=108-(10.2)^{2}$
$=3.96$
3. If $y=(1+x)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)\left(x^{16}+1\right)$, then find the value of $y^{\prime \prime}-y^{\prime}$ at $x=-1$:
A. 496
B. 946
C. -496
D. -946

Answer (C)

Solution:

$$
\begin{align*}
& y=(1+x)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)\left(x^{16}+1\right) \\
& \text { Multiply and divide by }(x-1) \text { we get, } \\
& y=\frac{(1+x)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)\left(x^{16}+1\right)(x-1)}{(x-1)} \\
& \Rightarrow y=\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)\left(x^{16}+1\right)}{(x-1)} \\
& \Rightarrow y=\frac{\left(x^{4}-1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)\left(x^{16}+1\right)}{(x-1)} \\
& \Rightarrow y=\frac{\left(x^{8}-1\right)\left(x^{8}+1\right)\left(x^{16}+1\right)}{(x-1)} \\
& \Rightarrow y=\frac{\left(x^{16}-1\right)\left(x^{16}+1\right)}{(x-1)} \\
& \Rightarrow y=\frac{\left(x^{32}-1\right)}{(x-1)} \\
& \text { At } x=-1 \text { we get } y=0 \\
& y(x-1)=x^{32}-1 \\
& \text { Differentiate on both sides, } \\
& y^{\prime}(x-1)+y=32 x^{31} \quad \cdots(1) \tag{1}\\
& \text { At } x=-1 \\
& y^{\prime}(-1)=\frac{-32}{-2}=16
\end{align*}
$$

Differentiate equation (1) on both sides we get,
$y^{\prime \prime}(x-1)+y^{\prime}+y^{\prime}=32 \times 31 x^{30}$
At $x=-1$
$y^{\prime \prime}(-1)=\frac{32 \times 31-16-16}{-2}=-480$
$\therefore y^{\prime \prime}(-1)-y^{\prime}(-1)=-480-16=-49$
4. The logical statement $(p \wedge \sim q) \rightarrow(p \rightarrow \sim q)$ is a :
A. Tautology
B. Fallacy
C. Equivalent to $p \vee \sim q$
D. Equivalent to $p \wedge \sim q$

Answer (A)

Solution:

$$
\begin{aligned}
& (p \wedge \sim q) \rightarrow(p \rightarrow \sim q) \\
& =(p \wedge \sim q) \rightarrow(\sim p \vee \sim q) \\
& =\sim(p \wedge \sim q) \vee(\sim p \vee \sim q) \\
& =(\sim p \vee q) \vee(\sim p \vee \sim q) \\
& =\sim p \wedge T=T \text { (Tautology) }
\end{aligned}
$$

5. If a_{r} is the coefficient of x^{10-r} in expansion of $(1+x)^{10}$ then $\sum_{r=1}^{10} r^{3}\left(\frac{a_{r}}{a_{r-1}}\right)^{2}$ is:
A. 390
B. 1210
C. 485
D. 220

Answer (B)

Solution:

$$
\begin{aligned}
& \text { Coefficient of } x^{10-r} \text { in }(1+x)^{10} \text { is }{ }^{10} C_{10-r} \\
& \therefore a_{r}={ }^{10} C_{10-r} \\
& \begin{array}{c}
\sum_{r=1}^{10} r^{3}\left(\frac{a_{r}}{a_{r-1}}\right)^{2}=\sum_{r=1}^{10} r^{3} \cdot\left(\frac{10!}{r!(10-r)!} \cdot \frac{(11-r)!(r-1)!}{10!}\right)^{2} \\
\qquad=\sum_{r=1}^{10} r^{3} \cdot\left(\frac{11-r}{r}\right)^{2}=\sum_{r=1}^{10} r(11-r)^{2}
\end{array} \\
& \sum_{r=1}^{10} r(11-r)^{2}=1 \times 10^{2}+2 \times 9^{2}+\cdots+9 \times 2^{2}+10 \times 1^{2} \\
& \text { Which is same as } \sum_{r=1}^{10} r^{2}(11-r)
\end{aligned} \begin{aligned}
& \sum_{r=1}^{10} r^{2}(11-r)=1^{2} \times 10+2^{2} \times 9+\cdots+9^{2} \times 2+10^{2} \times 1 \\
& \Rightarrow \sum_{r=1}^{10} r(11-r)^{2}=\sum_{r=1}^{10} r^{2}(11-r) \\
& \Rightarrow \sum_{r=1}^{10} r^{2}(11-r)=11 \sum_{r=1}^{10} r^{2}-\sum_{r=1}^{10} r^{3} \\
& \Rightarrow \sum_{r=1}^{10} r^{3}\left(\frac{a_{r}}{a_{r-1}}\right)^{2}=11\left(\frac{10 \times 11 \times 21}{6}\right)-\left(\frac{10 \times 11}{2}\right)^{2} \\
& \Rightarrow \sum_{r=1}^{10} r^{3}\left(\frac{a_{r}}{a_{r-1}}\right)^{2}=11^{2} \times 35-11^{2} \times 25 \\
& \Rightarrow \sum_{r=1}^{10} r^{3}\left(\frac{a_{r}}{a_{r-1}}\right)^{2}=11^{2} \times 10=1210
\end{aligned}
$$

6. $\lim _{n \rightarrow \infty} \frac{1+2-3+4+5-6+\cdots(3 n-2)+(3 n-1)-3 n}{\sqrt{2 n^{4}+3 n+1}-\sqrt{n^{4}+n+3}}$
A. $\frac{3}{2}(\sqrt{2}+1)$
B. $\frac{2}{3}(\sqrt{2}+1)$
C. $\frac{2}{3 \sqrt{2}}$
D. $2 \sqrt{2}$

Answer (A)

Solution:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1+2-3+4+5-6+\cdots(3 n-2)+(3 n-1)-3 n}{\sqrt{2 n^{4}+3 n+1}-\sqrt{n^{4}+n+3}} \\
& =\lim _{n \rightarrow \infty} \frac{\sum_{r=1}^{n}((3 r-2)+(3 r-1)-3 r)}{\sqrt{2 n^{4}+3 n+1}-\sqrt{n^{4}+n+3}} \\
& =\lim _{n \rightarrow \infty} \frac{\sum_{r=1}^{n} 3(r-1)}{\sqrt{2 n^{4}+3 n+1}-\sqrt{n^{4}+n+3}} \\
& =\lim _{n \rightarrow \infty} \frac{3 \frac{n(n-1)}{2}}{\sqrt{2 n^{4}+3 n+1}-\sqrt{n^{4}+n+3}} \\
& =\lim _{n \rightarrow \infty} \frac{3 \frac{n(n-1)}{2}}{n^{2}\left(\sqrt{2+\frac{3}{n^{3}}+\frac{1}{n^{4}}}-\sqrt{1+\frac{1}{n^{3}+\frac{3}{n^{4}}}}\right)} \\
& =\frac{3}{2}\left(\frac{1}{\sqrt{2}-1}\right)=\frac{3}{2}(\sqrt{2}+1)
\end{aligned}
$$

7. If $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=\left|z_{1}-z_{2}\right|^{2}$ when $z_{1}=2+3 i$ and $z_{2}=3+4 i$, then locus of z is:
A. Straight line with slope $-\frac{1}{2}$
B. Circle with radius $\frac{1}{\sqrt{2}}$
C. Hyperbola with eccentricity $\sqrt{2}$
D. Hyperbola with eccentricity $\frac{5}{2}$

Solution:

So, locus of P is circle whose diameter is $A B$
$A B=\sqrt{2}$
\therefore radius of circle $=\frac{1}{\sqrt{2}}$
8. $f(x)=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$ if $f(3)=\frac{1}{2}[\ln 5-\ln 6]$, then $f(4)$ is:
A. $\frac{1}{2}[\ln 17-\ln 19]$
B. $\frac{1}{2}[\ln 19-\ln 17]$
C. $\ln 19-\ln 17$
D. $\ln 17-\ln 19$

Answer (A)

Solution:

$$
\begin{aligned}
& f(x)=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x \\
& \text { Let } x^{2}=t \\
& 2 x d x=d t \\
& \Rightarrow \int \frac{d t}{(t+1)(t+3)} \\
& =\frac{1}{2} \int \frac{(t+3)-(t+1)}{(t+1)(t+3)} d t \\
& =\frac{1}{2}[\ln |t+1|-\ln |t+3|]+\frac{c}{2} \\
& =\frac{1}{2}\left[\ln \left|x^{2}+1\right|-\ln \left|x^{2}+3\right|\right]+\frac{c}{2} \\
& \text { Now } f(3)=\frac{1}{2}[\ln 5-\ln 6] \\
& \Rightarrow \frac{1}{2}[\ln 5-\ln 6]=\frac{1}{2}[\ln 10-\ln 12]+\frac{c}{2} \\
& \Rightarrow c=0 \\
& \therefore f(x)=\frac{1}{2}\left[\ln \left|x^{2}+1\right|-\ln \left|x^{2}+3\right|\right] \\
& \therefore f(4)=\frac{1}{2}[\ln 17-\ln 19]
\end{aligned}
$$

9. If $f(x)=\int_{0}^{2} e^{|x-t|} d t$, then the minimum value of $f(x)$ is equal to:
A. $2(e-1)$
B. $2(e+1)$
C. $2 e-1$
D. $2 e+1$

Answer (A)

Solution:

For $x>2$
$f(x)=\left.\int_{0}^{2} e^{x-t} d t \Rightarrow e^{x}\left(-e^{-t}\right)\right|_{0} ^{2} \Rightarrow e^{x}\left(1-e^{-2}\right)$
For $x<0$
$f(x)=\left.\int_{0}^{2} e^{t-x} d t \Rightarrow e^{-x} e^{t}\right|_{0} ^{2} \Rightarrow e^{-x}\left(e^{2}-1\right)$
For $0 \leq x \leq 2$
$f(x)=\int_{0}^{x} e^{x-t} d t+\int_{x}^{2} e^{t-x} d t$

$$
\begin{aligned}
& =-\left.e^{x} e^{-t}\right|_{0} ^{x}+\left.e^{-x} e^{t}\right|_{x} ^{2} \\
& =-e^{x}\left(e^{-x}-1\right)+e^{-x}\left(e^{2}-e^{x}\right) \\
& =-1+e^{x}+e^{2-x}-1 \\
& =e^{2-x}+e^{x}-2 \\
& f(x)=\left\{\begin{array}{c}
e^{x}\left(1-e^{-2}\right) x>2 \\
e^{2-x}+e^{x}-20 \leq x \leq 2 \\
e^{-x}\left(e^{x}-1\right) x<0
\end{array}\right. \\
& \text { For } x>2 \\
& f(x)_{\min }=e^{2}-1 \\
& \text { For } 0 \leq x \leq 2 \\
& f^{\prime}(x)=-e^{2-x}+e^{x}=0 \\
& \Rightarrow e^{x}=e^{2-x} \\
& \Rightarrow e^{2 x}=e^{2} \\
& \Rightarrow x=1 \\
& f(x)_{\min }=2 e-2=2(e-1)
\end{aligned}
$$

10. If $f(x)=x^{b}+3, g(x)=a x+c$. If $(g(f(x)))^{-1}=\left(\frac{x-7}{2}\right)^{\frac{1}{3}}$, then $f o g(a c)+g o f(b)$ is:
A. 189
B. 195
C. 194
D. 89

Answer (A)

Solution:

$$
\begin{aligned}
& g(f(x))=a\left(x^{b}+3\right)+c \\
& (g(f(x)))^{-1}=\left(\frac{x-3 a-c}{a}\right)^{\frac{1}{b}}=\left(\frac{x-7}{2}\right)^{\frac{1}{3}} \\
& \Rightarrow a=2 \\
& \Rightarrow b=3 \\
& \Rightarrow c=1 \\
& g(x)=2 x+1 \\
& f(x)=x^{3}+3 \\
& \text { Now } \operatorname{fog}(2)+\operatorname{gof}(3)=128+61=189
\end{aligned}
$$

11. The term independent of x in the expansion of $\left(2 x+\frac{1}{x^{7}}-7 x^{2}\right)^{5}$ is :
A. 1372
B. 2744
C. -13720
D. 13720

Answer (C)

Solution:

Using multinomial theorem,
$\left(2 x+\frac{1}{x^{7}}-7 x^{2}\right)^{5}$
$=\frac{5!}{\alpha!\beta!\gamma!}(2 x)^{\alpha}\left(\frac{1}{x^{7}}\right)^{\beta}\left(-7 x^{2}\right)^{\gamma}$, where $\alpha+\beta+\gamma=5 \cdots$ (i)
$=\frac{5!}{\alpha!\beta!\gamma!} 2^{\alpha} \cdot(-7)^{\gamma} x^{\alpha-7 \beta+2 \gamma}$
For independent term,
$\alpha-7 \beta+2 \gamma=0 \cdots(i i)$
From (i) and (ii), $\beta=\frac{\gamma+5}{8}$
Since α, β, γ are integers from [1,5]
$\Rightarrow \gamma=3, \beta=1, \alpha=1$
\therefore independent term $=\frac{5!}{1!1!3!} 2^{1} \cdot(-7)^{3}$
$=-13720$
12. The value of $A=\left[\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]$ then $\left|\operatorname{adj}\left(\operatorname{adj} A^{2}\right)\right|$ is:
A. 6^{4}
B. 4^{8}
C. 4^{5}
D. 2^{8}

Answer (D)

Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & \log _{x} y & \log _{x} z \\
\log _{y} x & 2 & \log _{y} z \\
\log _{z} x & \log _{z} y & 3
\end{array}\right] \\
& |A|=\frac{1}{\log x \log y \log z}\left[\begin{array}{ccc}
\log x & \log y & \log z \\
\log x & 2 \log y & \log z \\
\log x & \log y & 3 \log z
\end{array}\right] \\
& |A|=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 3
\end{array}\right] \\
& \Rightarrow|A|=2 \\
& \left|\operatorname{adj}\left(\operatorname{adj} A^{2}\right)\right|=|A|^{8} \\
& =2^{8}
\end{aligned}
$$

13. Sum of two positive integers is 66 and μ is the maximum value of their product $S=\left\{x \in \mathbb{Z}, x(66-x) \geq \frac{5 \mu}{9}\right\}, x \neq$ 0 , then probability of A when $A=\{x \in S ; x=3 k, x \in \mathbb{N}\}$ is:
$\begin{array}{ll}\text { A. } & \frac{1}{4} \\ \text { B. } & \frac{2}{3} \\ \text { C. } & \frac{1}{3} \\ \text { D. } & \frac{1}{2}\end{array}$

Answer (C)

Solution:

Let the two numbers be α and β
$\alpha+\beta=66$
A. M. \geq G. M.
$\frac{\alpha+\beta}{2} \geq \sqrt{\alpha \beta}$
$\mu=33 \times 33=1089$
$x(66-x) \geq \frac{5 \mu}{9}$
$x(66-x) \geq 605$
$x^{2}-66 x+605 \leq 0$
$x \in[11,55]$
Favourable set of values of x for event $A=\{12,15,18, \cdots, 54\}$
$P(A)=\frac{15}{45}=\frac{1}{3}$
14. Let $L_{1}=\frac{x-3}{1}=\frac{y-2}{2}=\frac{z-1}{3}$ and $L_{2}=\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and direction ratios of line L_{3} are $<1,-1,3>$. P and Q are points of intersection of L_{1} and L_{3} and $L_{2} \& L_{3}$, respectively. Then, distance between P and Q is:
A. $\frac{10}{3} \sqrt{6}$
B. $\frac{8}{3} \sqrt{11}$
C. $\frac{4}{3} \sqrt{11}$
D. $\frac{11}{3} \sqrt{6}$

Answer (B)

Solution:

$$
\begin{aligned}
& \text { Let } P Q=A B \\
& \text { Let } A(3,2,1) \\
& \text { Equation of line } A B \text { : } \\
& \frac{x-3}{1}=\frac{y-2}{-1}=\frac{z-1}{3}=k \text { (let) } \\
& \Rightarrow x=k x+3, y=-k+2, z=3 k+1 \\
& \text { Let coordinates of } B(k+3,-k+2,3 k+1) \\
& B \text { lies on } L_{2} \\
& B(\lambda+1,2 \lambda+2,3 \lambda+3) \\
& k+3=\lambda+1 \Rightarrow \lambda-k=2 \\
& 2-k=2 \lambda+2 \Rightarrow 2 \lambda+k=0 \Rightarrow k=-2 \lambda \\
& \Rightarrow 3 \lambda=2 \Rightarrow \lambda=\frac{2}{3} \\
& B\left(\frac{5}{3}, \frac{10}{3}, 5\right) \\
& A B=\sqrt{\left(\frac{4}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}+16} \\
& =\frac{4}{3} \sqrt{11}=P Q
\end{aligned}
$$

15. If $\vec{a}=-\hat{\imath}+2 \hat{\jmath}+\hat{k}$ is rotated by 90° about origin passing through y-axis. If new vector is \vec{b} then projection of \vec{b} on $\vec{c}=5 \hat{\imath}+4 \hat{\jmath}+3 \hat{k}$ is equal to:
A. $\frac{6}{5}$
B. $\frac{5}{5}$
C. $\frac{6}{5 \sqrt{3}}$
D. $\frac{6 \sqrt{3}}{5}$

Answer (A)

Solution:

$\vec{b}=\lambda \vec{a}+\mu \hat{j}$
$b=\lambda(-\hat{\imath}+2 \hat{\jmath}+\hat{k})+\mu \hat{\jmath}$
$\vec{b} \cdot \vec{a}=0$
$(\lambda \vec{a}+\mu \hat{\jmath}) \vec{a}=0$
$6 \lambda+2 \mu=0$
$\Rightarrow \mu=-3 \lambda$
$\vec{b}=\lambda(\vec{a}-3 \hat{\jmath})=\lambda(-\hat{\imath}-\hat{\jmath}+\hat{k})$
$\lambda= \pm \sqrt{2}$
Projection of \vec{b} on $\vec{c}=|\vec{b} \cdot \hat{c}|$
$=\left|(-\hat{\imath}-\hat{\jmath}+\hat{k}) \frac{(5 \hat{\imath}+4 \hat{\jmath}+3 \hat{k})}{5 \sqrt{2}}\right|=\frac{6}{5}$
16. Given $\frac{d y}{d x}=\frac{y}{x}\left(1+x y^{2}(1+\ln x)\right)$. If $y(1)=3$, then the value of $\frac{y^{2}(3)}{9}$ is:
A. $-\frac{1}{43+27 \ln 3}$
B. $\frac{1}{43+27 \ln 3}$
C. $\frac{9+9}{59-162(1+\ln 3)}$
D. $\frac{1}{27-43 \ln 3}$

Answer (B)

Solution:

$\frac{d y}{d x}-\frac{y}{x}=y^{3}(1+\ln x)$
$\Rightarrow \frac{1}{y^{3}} \frac{d y}{d x}-\frac{1}{x y^{2}}=(1+\ln x)$
Taking $\frac{1}{y^{2}}=t$
$\Rightarrow-\frac{2}{y^{3}} \frac{d y}{d x}=\frac{d t}{d x}$
$\therefore-\frac{1}{2} \frac{d t}{d x}-\frac{t}{x}=(1+\ln x)$
$\Rightarrow \frac{d t}{d x}+\frac{2 t}{x}=-2(1+\ln x)$
I.F. $=e^{\int_{\frac{2}{x}}^{2} d x}=x^{2}$
$\therefore t x^{2}=\int-2(1+\ln x) x^{2} d x$
$\Rightarrow t x^{2}=-2\left[\frac{(1+\ln x) x^{3}}{3}-\int \frac{x^{2}}{3} d x\right]+c$
$\frac{x^{2}}{y^{2}}=-2\left[\frac{x^{3}}{3}(1+\ln x)-\frac{x^{3}}{9}\right]+c \cdots(i)$
$y(1)=3 \Rightarrow \frac{1}{9}=-2\left(\frac{1}{3}-\frac{1}{9}\right)+c$
$\therefore c=\frac{5}{9}$
Now putting $x=3, c=\frac{5}{9}$ in (i)
$\frac{9}{y^{2}}=-2(9(1+\ln 3)-3)+\frac{5}{9}$
$=\frac{59}{9}-18(1+\ln 3)$
$\Rightarrow \frac{y^{2}}{9}=\frac{9}{59-162(1+\ln 3)}$
17. If $a, b \in[1,25], a, b \in \mathbb{N}$ such that $a+b$ is multiple of 5 , then the number of ordered pair (a, b) is \qquad .

Answer (125)

Solution:

TYPE	NUMBERS
$5 k$	$5,10,15,20,25$
$5 k+1$	$1,6,11,16,21$
$5 k+2$	$2,7,12,17,22$
$5 k+3$	$3,8,13,18,23$
$5 k+4$	$4,9,14,19,24$

(a, b) can be selected as
I. 1 of $5 k+1$ and 1 of $5 k+4=2 \times 25=50$
II. 1 of $5 k+2$ and 1 of $5 k+3=2 \times 25=50$
III. Both of the type $5 k=25$

Total $=125$
18. If $\log _{2}\left(9^{2 \alpha-4}+13\right)-\log _{2}\left(3^{2 \alpha-4} \cdot \frac{5}{2}+1\right)=2$, then maximum integral value of β for which equation, $x^{2}-\left(\left(\sum \alpha\right)^{2} x\right)+\sum(\alpha+1)^{2} \beta=0$ has real roots is \qquad -.

Answer (6)

Solution:
$\log _{2}\left(9^{2 \alpha-4}+13\right)-\log _{2}\left(3^{2 \alpha-4} \cdot \frac{5}{2}+1\right)=2$
$\therefore \frac{9^{2 \alpha-4}+13}{3^{2 \alpha-4} \cdot \frac{5}{2}+1}=4$
Let $3^{2 \alpha-4}=t$
$\Rightarrow t^{2}+13=10 t+4$
$\Rightarrow t^{2}-10 t+9=0$
$\Rightarrow t=9,1$
$\Rightarrow \alpha=3,2$
Now equation will become:
$x^{2}-25 x+25 \beta=0$ has real roots
$\therefore D \geq 0$
$\Rightarrow 25^{2}-4 \cdot 25 \beta \geq 0$
$\Rightarrow \beta \leq \frac{25}{4}$
Maximum integral value $=6$

